
6. MCI - Management Software CSCI

The Management Software CI consists of the Mode Management Service, Fault Management
Service, the Performance Management Service, the Security Management Service, the
Accountability Management Service, the Physical Configuration Management Service, the Report
Service, the Billing and Accounting Service, the Management DBMS, the Trouble Ticketing
Service, the Management Data Access Service, the Management Database, the User Comment
Survey Tool, and Backup and Restore Management. The Management Software CI context is
provided in Figure 6-1.

MCIMACI

Management Agent Services

Mode
Management

Fault
Management

Performance
Management

Security
Management

Trouble
Ticketing

Management
Data Access

Billing /
Accounting

Management
DBMS

Accountability
Management

Report
Generation
Management

Physical
Configuration
Management

Common Management
Services (HPOV)

User Comment
Survey

Backup and
Restore

MLCI

Change Request
Management

License
Management

SW Distribution
Management

SW Change
Management

Baseline
Management

Training
Management

Inventory/
Logistics/
Maintenance
Management

Policies &
Procedures
Management

Enterprise Framework
(TIVOLI)

Figure 6-1. Management Software CI Context

6-1 305-CD-029-002

6.1 Mode Management

6.1.1 Mode Management Overview

Mode Management addresses the planning, initiation, execution, monitoring, and control of
various system activities. These activities include operations, testing, and training. Each unique
activity is classified as a mode. Mode Management enables the execution of multiple modes such
that each mode functions without interfering with the other and each mode maintains data integrity
throughout it's execution. For example, testing a data server application within the same system
that is supporting operational activities. The test version of the data server must not interfere/
interact with the operational version of the data server. In addition, it will only see and have access
to interface components that have been specifically set up and initiated under the same test mode.

The mode management design does not limit the number of concurrently executing modes,
however, performance considerations need to be addressed prior to the initiation of an additional
mode. It will support multiple test and training mode instances, but due to data persistence issues
there can only be one operational mode of execution at any given time. Once an application has
been initiated within a given mode, it will remain in that mode for the life of the process.

The site Resource Manager will have a view of all the components supporting each mode. This
view is provided through HP OpenView and can be configured to display all of the components
from every mode on one window or to display the components associated with each mode in
separate windows. Software components will be duplicated, and hardware resources will be
isolated whenever possible to support an additional mode. However, there will be shared
resources, both hardware and software, that require special consideration to enable mode
management support.

Section 6.1 focuses on the detailed design for the Mode Management Service (MMS) within MSS.
Mode Management compliance within each subsystem is addressed in the subsystem's associated
detailed design specification. However, a brief synopsis of the mode management design from a
system perspective is provided in the paragraph 6.1.1.1 to enhance the reader's overall
understanding of the MMS design. The Mode Management Service design overview is provided
in section 6.1.1.2, followed by the Object and Dynamic models.

6.1.1.1 Mode Management within ECS Context

Mode Management, from a system perspective, consists of procedural activities and infrastructure
control. The procedural aspects of mode management address mode planning, resource allocation,
and system configuration activities. Infrastructure control ensures the software subsystems will
recognize the different modes of execution and that data integrity and process distinction will be
maintained within each mode.

6.1.1.1.1 Procedural Activities

The procedural activities that are required to support a mode of execution are as follows:

1. Obtain and read the test/training/simulation/etc. plan from the plan originator.

2. Obtain a unique mode identifier from the Resource Manager.

3.	 Determine the scope of the new activity. Will the test be inter-DAAC or intra-DAAC?
What services/components are involved? etc..

6-2 305-CD-029-002

4.	 Determine whether the addition of the new mode will impact the performance of any other
simultaneously executing modes. If so, how can this impact be minimized.

5. Coordinate M&O personnel required for the support of the additional mode.

6.	 Use the Resource planning tool to identify and allocate the necessary hardware and
software resources required to support the additional mode.

7.	 Notify the SMC of the intended plan. If the new mode involves multiple DAACs, the SMC
may become involved in the planning process.

8.	 Configure the directory namespace (i.e. Cell Directory Structure (CDS)) for the new mode
based on the mode identifier. This activity may not be required if the CDS had been
previously configured using the same mode identifier.

9.	 Create an HPOV map in support of the new mode. (This activity may not be required if an
HPOV map had been previously configured for the same mode).

10. Establish a new HPOV session and load mode specific map into HP OpenView.

11. Identify support data sets, test software, control files, and test procedures necessary for the
execution of the new mode.

12. Establish directory partitions within the file system and databases based on the mode
identifier.

13. Load support data sets, configuration files, control files (drivers), and test software into
mode established partitions.

14. Initiate Mode Management Service from within the HP OpenView management
environment.

15. Activate new Mode within system using Mode Management Service.

16. After mode completion backup mode associated output data sets

17. Deactivate mode using the MMS and return system to a pre configured state.

6.1.1.1.2 Infrastructure Control

The System Infrastructure will ensure data integrity between modes and provide process
distinction and separation where feasible. In the case of COTS, where running multiple instances
of the executable may not be possible, a single application will be required to handle requests from
multiple modes. These shared resources require special consideration to ensure integrity between
modes. These capabilities will be provided as part of the system infrastructure which have been
designed to accommodate mode management.

Infrastructure control is based on the mode identifier. The DCE CDS and all data partitioning will
be based on this identifier. These entities will be pre configured, as part of the procedural activities
required to support a mode, to accept mode specific requests. Applications are hard coded with a
mode attribute variable where mode specific requests are required. The application obtains the
mode identifier at startup which it will use for all subsequent mode specific interprocess
communications and data I/O requests.

The mode identifier specifications are as follows:

• Maximum of six (6) characters

6-3 305-CD-029-002

• Alpha-numeric including the underscore character

• Must not start with an underscore character

• Characters are case sensitive

Examples are "ops", "ts1", "ts2", "tr1", "shared"

Mode Identifier Guidelines:

• The "ops" mode identifier is mandatory for all operational (production) mode activities.

•	 The "shared" mode identifier is only used internally to designate a common CDS
namespace registration point for mode independent applications.

6.1.1.1.2.1 Data Integrity

Data integrity must be maintained between each software mode. For example, operational
processes can never read from test/training data sets and test/training data can never be written to
operational data sets. All data required to support an additional mode will be duplicated. It will
be partitioned by using separate volumes or by a hierarchical directory structure within the same
volume such that all reading/writing of data will be segregated between software modes. All data
required to support a given mode must be clearly defined, segregated, and duplicated prior to the
initiation of the new activity. The segregation of the data will be based on the mode identifier.

For data storage in the UNIX environment, the data will be segregated on the same (or different)
disk volume(s) in a hierarchical directory structure based on the mode identifier. The applications
will access the data using the mode identifier as part of the directory path.

For data storage within a DBMS, the data will be segregated using a separate database or tape
group. Applications accessing the DBMS will pass the mode identifier to the DBMS interface
class which will access the corresponding mode specific database.

6.1.1.1.2.2 Process Distinction and Separation

Process distinction and separation for custom developed applications is accomplished via DCE.
The Process Framework (PF) will ensure mode specific process communication by registering
each server application into the DCE CDS namespace within the appropriate mode hierarchy.

When a server starts up, it registers itself in the CDS directory structure via the PF. Each entry in
the CDS is uniquely identified by the server name and it's UUID. If CDS is given the UUID, it
will return the rest of the name that is actually registered. Part of the administration for DCE is to
setup the CDS directory structure. This is where the group, location, and mode combinations will
be initially set up. This way, when registration in CDS occurs, it is known where to place the name.
One function of setting up a new mode will be to manually add a new path to the CDS directory
structure for the given activity. All applications will then automatically register to this new path
based on the mode identifier obtained at startup. The mode identifier will be passed from the
Management Framework (HP OpenView) to the remote executable startup scripts as a command
line argument. The startup script will set the mode as an environment variable, which is necessary
for assigning a mode specific UUID required for ACL management, and then also pass it in as a
command line argument to the application's main. Once an application has been initiated within
a given mode, it remains in that mode for the life of the process. When clients do server lookup
calls, they will only see and find the servers running within the mode they are executing.

6-4 305-CD-029-002

Some applications like the Management Data Access (MDA), Subagent, and virtually all COTS
products will be mode independent, i.e. a single instantiation of the application will support
multiple modes. When mode specific interfacing or data I/O is required the mode identifier will
be passed into the application. For example the MDA, which is mode independent, processes
events and routes them to the management database. For mode management support it will extract
the mode attribute from the event class and then use this to route the event to the mode specific
management database via the DBMS interface class. Mode independent applications will register
under the "shared" hierarchical directory structure within the CDS namespace. If an event is
generated by a mode independent application, the MDA will copy to all active management
database(s) independent of mode. This will ensure the autonomy of each mode specific
management database.

6.1.1.2 MSS Mode Management Service

The Mode Management Service (MMS) within MSS provides mode initiation, monitoring, and
controlling capabilities. These capabilities are provided by HP OpenView with custom code
extensions. The MMS is a custom developed application which will interface with HP OpenView
via HP's ovw APIs and with the agents via HP's ovsnmp API's. A high level overview of this
interface is presented in Figure 6.1.1. Communication to and from HP OpenView (and therefore
the MMS) is via SNMP protocol. SNMP Gets are sent directly to the remote agent while SNMP
Traps and Sets are routed through the local Deputy Agent. The Deputy Agent is used to
encapsulate the SNMP call into a more reliable RPC call for transport to/from the remote host.

Through the use of Agents, each process can be controlled and monitored from within HP
OpenView. The MMS will incorporate the mode management user interface directly into the HP
OpenView GUI, providing methods to activate and deactivate a mode. In addition it provides a
mode specific user interface for accessing CSS life-cycle control (suspend, resume, and shutdown).
Monitoring capabilities are provided as standard functionality within HP OpenView and will be
enhanced to reflect mode specific status propagation of software system, subsystem, application,
program, and process level entities. Hardware is mode independent so it's status will be reflected
within every mode in which it is configured.

HP OpenView will support multiple modes through the use of separate HPOV sessions. A new
session can be brought up on the same host or on separate hosts. Figure 6.1.2 shows a multi-session
view of how HP OpenView can be configured on separate hosts to support multiple modes. Every
session can load one and only one map. The map can have any number of submaps defined that
will decompose the basic high level map representation. Each mode will have it's mode specific
map (and associated submaps) predefined to recognize and support the hardware and software
components that are supporting the given mode. Submap context will be determined based on the
mode identifier.

6-5 305-CD-029-002

HP OpenView Windows (ovw)

Mode Management
Service (MMS)

Application
main()

ovwAPI’s

snmpAPI’s

ovwInit()

ovsnmpopen()

Traps and Sets

Gets Managed host

snmp over UDP

MsAgDeputy

snmp packaged in RPC’s over TCP/IP

Managed host

Figure 6.1-1. Mode Management Service Interface Overview Diagram

The MMS, initiated from within HP OpenView, is an event driven application. It will initialize the
ovw and ovsnmp API calls, register the MMS callbacks, and then enter a main event loop. This
functionality is similar to X-windows processing. Then when an action occurs, such as an operator
selecting "activate mode" from the HP OpenView GUI, an event is triggered and the applicable
callback is executed. The objects detailed in the MMS Object diagram are instantiated from within
the callback operations. The MMS incorporates the following callback operations (more detail is
provided in paragraph 6.1.1.4):

• ovwActivateMode()

• prompt operator for new mode identifier

• prompt operator for simulation time if non-ops mode is entered

• add new mode identifier to active mode list

•	 issue ovsnmp API call to Deputy Agent to activate the new mode. (Detailed information
is provided on this in the dynamic model).

• ovwDeactivateMode()

• Ensure all executables within mode are inactive

6-6 305-CD-029-002

Management Management
Console Console

Management Station

map
database

object
database

ovwdb
daemon

OVwSessionId = ops:0 OVwSessionId = ts1:0

socket socket NFS

NFS

Figure 6.1-2. HP OpenView Multi-Session View Diagram

• issue ovsnmp API call to Deputy Agent to deactivate the selected mode.

• remove deactivated mode from active mode list

• ovwShutdownExec()

•	 decompose system/subsystem level ovw objects into application/program/process level
objects.

• issue ovsnmp API call to Deputy Agent to shutdown executable.

• ovwSuspendExec()

•	 decompose system/subsystem level ovw objects into application/program/process level
objects.

• issue ovsnmp API call to Deputy Agent to suspend executable.

• ovwResumeExec()

•	 decompose system/subsystem level ovw objects into application/program/process level
objects.

• issue ovsnmp API call to Deputy Agent to resume executable.

When a new mode is activated, the subagent's MsAgDiscoverer class will add the new mode
identifier to it's valid modes list. Since all applications and executables require an associated
configuration file in the subagent's configuration directory, the MsAgDiscoverer class uses this list
to determine the configuration directory trees to span when it searches for installed applications.

6-7 305-CD-029-002

When the new mode is added, it issues a DiscoverNow() call and searches each mode's
configuration tree. When new applications are discovered (and they will be since the executables
that support the new mode are now recognized by the subagent), the subagent will issue an SNMP
trap to HP OpenView to add the new object to the ovw database. Every application and executable
is represented internally within HP Openview as an object. This object contains all of the
executable's associated attributes based on the information contained in it's corresponding
configuration file. The object's mode (i.e. executable's mode) that was passed back from the
subagent that discovered it, is also stored in the object database. HP OpenView objects are
represented as symbols on the HP OpenView maps/submaps. When it receives the snmp trap to
add the new object it will add it's corresponding symbol to the appropriate submap within the
applicable mode's session. The symbol will be in an inactive state since the actual executable has
not been started yet. It has merely registered within the management framework. This action
occurs for all the applications/executables that are in support of the new mode. From this state the
operator can start the applications/executables as part of the normal HP OpenView startup process.

In summary, the Mode Management Service will:

• Incorporate Mode Management Service functionality into the HP OpenView GUI.

• Support independent displays for each different mode of execution.

• Provide methods for activating and deactivating the system to a given mode.

•	 Enable startup/shutdown/suspend/resume activities for each process by utilizing CSS
provided life cycle services.

• Provide the capability to enter a simulated time value for any non-ops mode if required.

• Enable application/program/process level monitoring within each mode.

6.1.1.3 Mode Management COTS

HP OpenView Network Node Manager (NNM) has been selected as the ECS Management
Framework. This COTS product inherently provides the capabilities for fault and performance
management of TCP/IP networks (SNMP devices). Mode Capabilities will be added via a custom
Mode Management Service application. In the Object Model, Section 6.1.6, HP OpenView
Network Node Manager is represented by the object labeled ManagementFramework. This
product provides capabilities and features to allow customization for mode management of the
ECS network. This customization, represented by MsMmMode, MsMmModeInit,
MsMmModeTerm, MsMmCtrl, MsMmSuspend, MsMmResume, and MsMmShutdown in the
Object Model, includes the following tasks:

•	 creation of maps and submaps to include the separation into different maps of the processes
associated with a particular mode of execution

•	 add discovered managed objects to the appropriate submaps to graphically represent the
topology of the ECS network

• change and propagate status of managed object based on faults/events

• control the life-cycle services (startup/shutdown/suspend/resume)

•	 seamlessly incorporate Mode Management Service functionality into the HP OpenView
GUI.

6-8 305-CD-029-002

• support independent displays for each different mode of execution.

• methods for activating and deactivating the system to a given mode.

• capability to enter a simulated time value for any none "ops" mode if required.

• application/program/process level monitoring within each mode.

• definition of monitoring criteria

• definition of thresholds on attribute values

• definition of notification mechanisms

• definition of forwarding criteria

The product also provides application programming interfaces (APIs) and an extensible graphical
user interface to allow its capabilities to be extended, through custom development, for the mode
management of non-SNMP entities such as ECS applications. This custom development is
illustrated in the appropriate sections of the object model.

6.1.1.4 MMS Main Loop and Callbacks

The PDL for the MMS, event driven, main loop as well as for the MMS callbacks is as follows:

Basic Main Loop Structure:
main(argc, argv)

{

......

ovw initializations

......

ovsnmp initializations

......

add callbacks

......

mainEventLoop(....)

}

Callback Structure:
OVwActivateMode()

{

// instantiate a mode init object

MsMmModeInit newMode;

// call member function to tell agent to activate this new mode

newMode.ActivateMode();

}

OVwDeactivateMode()

{

// instantiate a mode term object with the mode to deactivate

MsMmModeTerm killMode(RWCString mode);

// call member function to see if valid and tell agent to deactivate mode

killMode.DeactivatMode();

}

6-9 305-CD-029-002

OVwSuspendExec(ovwObject *objectptr)

{

// create an application level object pointer if needed

ovwObject *appObject;

EcTint seconds;

// obtain number of seconds until suspend

ovwAPIGUI(“Enter Number of seconds until suspend: “, &seconds);

// system and subsystem level ovwObjects need to be broken

// down into application level objects.

if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)

{

traverse down system or subsystem object tree, then

for each (appObject = objectptr->application level object) do

{

// create a suspend object for each application level ovw object

MsMmSuspend suspendObj(appObject->nTblID, appObject->rowIndex,

appObject->hostID, appObject->seconds);

// issue suspend to agent

suspendObj.supendExec();

}

}

else

{

// create a suspend object for the (app, prog, or process level) ovw object

MsMmSuspend suspendObj(objectptr->nTblID, objectptr->rowIndex,

objectptr->hostID, objectptr->seconds);

// issue suspend to agent

suspendObj.supendExec();

}

}

OVwShutdownExec(ovwObject *objectptr)

{

// create an application level object pointer if needed

ovwObject *appObject;

EcTint seconds;

// obtain number of seconds until shutdown

ovwAPIGUI(“Enter Number of seconds until shutdown: “, &seconds);

// system and subsystem level ovwObjects need to be broken

// down into application level objects.

if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)

{

traverse down system or subsystem object tree, then

for each (appObject = objectptr->application level object) do

{

// create a shutdown object for each application level ovw object

MsMmShutdown shutdownObj(appObject->nTblID, appObject->rowIndex,

6-10 305-CD-029-002

 appObject->hostID, appObject->seconds);

// issue shutdown to agent

shutdownObj.shutdownExec();

}

}

else

{

// create a shutdown object for the (app, prog, or process level) ovw object

MsMmShutdown shutdownObj(objectptr->nTblID, objectptr->rowIndex,

objectptr->hostID, objectptr->seconds);

// issue shutdown to agent

shutdownObj.shutdownExec();

}

}

OVwResumeExec(ovwObject *objectptr)

{

// create an application level object pointer if needed

ovwObject *appObject;

// system and subsystem level ovwObjects need to be broken

// down into application level objects.

if (objectptr->objLevel == “system” || objectptr->objLevel == “subsystem”)

{

traverse down system or subsystem object tree, then

for each (appObject = objectptr->application level object) do

{

// create a resume object for each application level ovw object

MsMmResume resumeObj(appObject->nTblID, appObject->rowIndex,

appObject->hostID);

// issue resume to agent

resumeObj.resumeExec();

}

}

else

{

// create a resume object for the (app, prog, or process level) ovw object

MsMmResume resumeObj(objectptr->nTblID, objectptr->rowIndex,

objectptr->hostID);

// issue resume to agent

resumeObj.resumeExec();

}

}

6.1.2 Mode Management Context

The Mode Management Service provides a means to initiate/terminate modes of execution, and to
monitor and control various CSCI components as managed resources. The managed resources
include SDPS, FOS, CSMS services.

The Management Agent, Master Agent, and Server Objects co-resident with the managed objects
provide/enable the monitoring and control of any process within each mode. The Mode
Management Service context diagram is shown in Figure 6.1-3.

6-11 305-CD-029-002

Simtime Simtime

SDPS

Current Mode
Operational Status

Process Control

Mode Management Service
(HPOV with custom

code)

This System

Mode Request Mode Request

FOS

Process Control

Current Mode
Operational Status

Fault Notifications

Active Modes Simtime
Mode Request

Process Control
Set Mode

Resource Status

Current Mode
Operational Status

Active Modes

Performance
Management

Service

Performance Statistics

Resource Status

SNMP Message
SNMP MessageRPC

Request Life-Cycle Service

Other
ECS Sites

CSS
Communications

Infrastructure

Life-Cycle Function
RPC

Figure 6.1-3. Mode Management Context Diagram

6.1.3 Mode Management Object Model

The Mode Management object model is shown in Figure 6.1-4.

Fault
Management

Service

CSMS

6-12 305-CD-029-002

MsMmMode

MsMmModeInit MsMmModeTerm

ManagementFramework

COTS
(HPOV)

MsMmCtrl

MsMmSuspend

MsMmShutdown

MsMmResume

_mode

MsMmMode(RWCString mode)
~MsMmMode()
GetMode()
UpdateActiveModeList(RWCString mode, EcTint action)

MsMmModeTerm(RWCString mode)
~MsMmModeTerm()
CheckObjectStatus()
DeactiveMode()

_tblID
_rowIndex
_hostID
_objectID

MsMmCtrl(EcTint tblID, EcTint rowIndex, EcThost hostID, OvwObjectID objectID)
~MsMmCtrl()
GetTblID()
GetRowIndex()
GetHostID()
GetObjectID()

_simTime

PromptSimTime()
GetSimTime()
MsMmModeInit()
~MsMmModeInit()
PromptMode()
ActivateMode()
ValidateMode(RWCString mode)

MsMmShutdown(EcTint tblID, EcTint rowIndex, EcThost hostID, RWTime seconds,
OvwObjectID objectID : MsMmCtrl(EcTint tblID, EcTint rowIndex, EcThost hostID,
OvwObjectID objectID))

~MsMmShutdown()
GetSeconds()
ShutdownExec()

MsMmResume(EcTint tblID, EcTint rowIndex, EcThost hostID, OvwObjectID objectID :
MsMnCtrl(EcTint tblID, EcTint rowIndex, EcThost hostID, OvwObjectID objectID))

_seconds

MsMmSuspend(EcTint tblID, EcTint rowIndex, EcThost hostID, RWTime seconds,
OvwObjectID objectID : MsMmCtrl(EcTint tblID, EcTint rowIndex, EcThost hostID,
OvwObjectID objectID))

~MsMmSuspend()
GetSeconds()
SuspendExec()

Offpage

- : RWCString

+
+
+ : RWCString
- : EcTInt

+
+
- : EcTInt
+ : EcTVoid

- : EcTInt
- : EcTInt
- : EcThost
- : OvwObjectID

+
+
+ : EcTint
+ : EcTint
+ : EcTHost
+ : OvwObjectID

- : RWTime

- : EcTInt
+ : RWTime
+
+
- : EcTInt
+ : EcTInt
- : EcTInt

+
+ : RWTime
+ : EcTVoid

+

- : RWTime

+
+ : RWTime
+ : EcTVoid

6-13
305-C

D
-029-002

communicates with communicates with

MsAgAgentMsAgDeputy
OffpageOffpage

Figure 6.1-4. Mode Management Object Model Diagram

6.1.3.1 ManagementFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is HP OpenView Network Node Manager, a COTS product. This product

provides the management framework with the underlying management services for the

management of SNMP-based network devices. It also provides the necessary integration

points and services for the integration of management applications. Since this class is all

COTS, it will not be described in detail here. The reader is referred to the documentation

set of HP OpenView Network Node Manager for further details on the product.

Attributes:

None

Operations:

None

Associations:

The ManagementFramework class has associations with the following classes:
Class: MsAgAgent communicateswith
Class: MsAgDeputy communicateswith

6.1.3.2 MsAgAgent Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This managed object class is the master (SNMP) agent on the host. It listens to port 161 to

receive SNMP requests from management applications. It also sends SNMP traps to

management applications when certain events occur. MSS requires this master agent be

extensible to support subagents. The agent performs authentication and authorization

validations on incoming requests. If the requested MIB variables are in MIB II, it performs

the functions requested. If the MIB variables are not in MIB II but in registered MIB

extensions, it passes the request to the subagent which supports that particular MIB

extension.

Attributes:

6-14 305-CD-029-002

None

Operations:

None

Associations:

The MsAgAgent class has associations with the following classes:
Class: ManagementFramework communicateswith

6.1.3.3 MsAgDeputy Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This object is used both by the management applications and by the subagent. The

management applications can send Set requests to the subagent through this object. The

subagent can send event notifications to this object so an SNMP trap can be emitted to

management framework.

Attributes:

None

Operations:

None

Associations:

The MsAgDeputy class has associations with the following classes:
Class: ManagementFramework communicateswith

6.1.3.4 MsMmCtrl Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

__tblID

6-15 305-CD-029-002

Attributes:

_hostID - The ID of the host where the process is running.

Data Type:EcThost

Privilege:Private

Default Value:

_objectID - The object ID in the HP Open View database.

Data Type:OvwObjectID

Privilege:Private

Default Value:

_rowIndex - The row index of the process table. Used by the MsAgTblMgr to access the

table.

Data Type:EcTInt

Privilege:Private

Default Value:

_tblID - The process/application/program table ID.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

GetHostID - Accessor function to get the _hostID attribute.

Arguments:

Return Type:EcTHost

Privilege:Public

PDL://{

//return (_hostID);

//}

GetObjectID - Accessor function to get the _objectID attribute.

Arguments:

Return Type:OvwObjectID

Privilege:Public

PDL://{

//return (_objectID);

//}

GetRowIndex - Accessor function to get the _rowIndex attribute.

Arguments:

Return Type:EcTint

6-16 305-CD-029-002

Privilege:Public

PDL://{

//return (_rowIndex);

//}

GetTblID - Accessor function to get the _tblID attribute.

Arguments:

Return Type:EcTint

Privilege:Public

PDL://{

//return (_tblID);

//}

MsMmCtrl - No description

Arguments:EcTint tblID, EcTint rowIndex, EcThost hostID, OvwObjectID objectID

Return Type:Void

Privilege:Public

PDL: // {

// }

~MsMmCtrl - The destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PDL: // {

// }

Associations:

The MsMmCtrl class has associations with the following classes:
None

6.1.3.5 MsMmMode Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

_mode

Attributes:

6-17 305-CD-029-002

_mode - The mode of a process such as ops, ts1, ts2, ...

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

GetMode - Accessor function to get the mode attribute.

Arguments:

Return Type:RWCString

Privilege:Public

PDL: // {

// return (_mode);

// }

MsMmMode - The default constructor for the class. Accepts the mode attribute.

Arguments:RWCString mode

Return Type:Void

Privilege:Public

PDL: // {

// _mode = mode;

// }

UpdateActiveModeList - Write a new mode to (or delete a mode from) Active mode file.

Arguments:RWCString mode, EcTint action

Return Type:EcTInt

Privilege:Private

PDL: // {

// lock_file();

// if (action == ADD)

// write new mode to the file

// else

// remove mode from file

// unlock_file();

// }

~MsMmMode - The destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PDL://{

//}

6-18 305-CD-029-002

Associations:

The MsMmMode class has associations with the following classes:
None

6.1.3.6 MsMmModeInit Class

Parent Class:MsMmMode

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

_simTime - The simulation time for test mode.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

ActivateMode - Add the new mode to active mode file.

Arguments:

Return Type:EcTInt

Privilege:Public

PDL: // {

// RWCString mode;

// RWCString sim_time;

//

// mode = MsMmMode::GetMode();

//

// sim_time = GetSimTime();

//

// MsMmMode::UpdateActiveModeList (mode , ADD);

//

// SnmpAPIActivateMode (mode, sim_time);

// }

GetSimTime - Accessor function to get the simulation time for non-ops modes.

Arguments:

Return Type:RWTime

Privilege:Public

PDL: // {

//return (_simTime);

6-19 305-CD-029-002

// }

MsMmModeInit - The default constructor.

Arguments:

Return Type:Void

Privilege:Public

PDL:

PromptMode - Get the mode for the process and validate it. Update the ::mode attribute.

Arguments:

Return Type:EcTInt

Privilege:Private

PDL://{

//RWCString mode;

//EcTInt mode_status = -1;

//

//OVWAPIGUI ("Enter desired mode");

//

//if (ValidateMode (mode))

//{

//MsMmMode::_mode = mode;

//mode_status = 0;

//}

//return (mode_status);

// }

PromptSimTime - Get the simulation time for the test mode, validate it, and update the

_simTime attribute.

Arguments:

Return Type:EcTInt

Privilege:Private

PDL:// {

//RWCString sim_time;

//sim_time = OVWAPIGUI ("Enter desired simulation time of mode")

//if (sim_time.isValid())

//_simTime = sim_time;

// }

ValidateMode - Validate the requested mode by consulting the MMS Current modes file.

Arguments:RWCString mode

Return Type:EcTInt

Privilege:Private

PDL: // {

// lock file

//

6-20 305-CD-029-002

// traverse the MMS current mode file to make sure that

// name entered is not in use.

//

// unlock file

// return (-1 or 0)

// }

~MsMmModeInit - The destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PDL: // {

// }

Associations:

The MsMmModeInit class has associations with the following classes:
ManagementFramework (Aggregation)

6.1.3.7 MsMmModeTerm Class

Parent Class:MsMmMode

Public:No

Distributed Object:No

Purpose and Description:

**

Attributes:

All Attributes inherited from parent class

Operations:

CheckObjectStatus - Checks the object status in the HP Open View database.

Arguments:

Return Type:EcTInt

Privilege:Private

PDL://{

//RWCString mode;

//mode = GetMode (); /* current mode */

//for every object in OVW object DB (ovwdbAPIs)

//{

//if (object.mode == mode) then

//if (object.mode.status != INACTIVE) then

6-21 305-CD-029-002

//add object to inactive_list

//}

//

//if (inactive_list != NULL)

//{

//ovwAPIGUI ("unable to deactivate mode, mode contains active

// processes. The following processes must be

// first shutdown")

//return (-1);/* NOTE: this should be EcUtStatus */

//

//return (0);

// }

DeactiveMode - Deactivate the mode and update the active mode list.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL:// {

//RWCString mode;

//if (CheckObjectStatus() == 0) /* ensure all executables within

// the mode are terminated */

//{

//mode = GetMode ();

//following function calls MsAgDiscoverer::DeactivateMode() which

//removes the mode from agent's internal table and issues a

//discoverNow operation to update the status

//

//snmpAPIDeactivateMode (mode);

//

//MsMmMode::UpdateActiveModeList (mode, REMOVE)

//

//}

// }

MsMmModeTerm - The default constructor which accepts the mode that needs to be

terminated.

Arguments:RWCString mode

Return Type:Void

Privilege:Public

PDL: // {

//MsMmMode::_mode = mode;

// }

~MsMmModeTerm - The destructor for the class.

6-22 305-CD-029-002

Arguments:

Return Type:Void

Privilege:Public

PDL: // {

// }

Associations:

The MsMmModeTerm class has associations with the following classes:
ManagementFramework (Aggregation)

6.1.3.8 MsMmResume Class

Parent Class:MsMmCtrl

Public:No

Distributed Object:No

Purpose and Description:

**

Attributes:

All Attributes inherited from parent class

Operations:

MsMmResume -

Arguments:EcTint tblID, EcTint rowIndex, EcThost hostID, OvwObjectID objectID :

MsMnCtrl(EcTint tblID, EcTint rowIndex, EcThost hostID, OvwObjectID objectID)

Return Type:Void

Privilege:Public

PDL://{

//}

Associations:

The MsMmResume class has associations with the following classes:
ManagementFramework (Aggregation)

6.1.3.9 MsMmShutdown Class

Parent Class:MsMmCtrl

Public:No

Distributed Object:No

Purpose and Description:

6-23 305-CD-029-002

 _seconds

Attributes:

All Attributes inherited from parent class

Operations:

GetSeconds - Accessor function to get the number of seconds.

Arguments:

Return Type:RWTime

Privilege:Public

PDL://{

//return (_seconds);

// }

MsMmShutdown
Arguments:EcTint tblID, EcTint rowIndex, EcThost hostID, RWTime seconds,

OvwObjectID objectID : MsMmCtrl(EcTint tblID, EcTint rowIndex, EcThost hostID,

OvwObjectID objectID)

ShutdownExec - This function initiates the mode based shutdown procedure.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: // {

// The following function will call the DeputyGate::SuspendExec(...) operation

//SnmpAPISuspend (GetTblID (), GetRowIndex (), GetHost (), GetSeconds());

// }

~MsMmShutdown - The destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PDL: // {

// }

Associations:

The MsMmShutdown class has associations with the following classes:
ManagementFramework (Aggregation)

6-24 305-CD-029-002

6.1.3.10 MsMmSuspend Class

Parent Class:MsMmCtrl

Public:No

Distributed Object:No

Purpose and Description:

_seconds

Attributes:

_seconds - This attribute represents the number of seconds required to suspend the process.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

GetSeconds - Accessor function to obtian the number of seconds.

Arguments:

Return Type:RWTime

Privilege:Public

PDL://{

//return (_seconds);

// }

MsMmSuspend
Arguments:EcTint tblID, EcTint rowIndex, EcThost hostID, RWTime seconds,

OvwObjectID objectID : MsMmCtrl(EcTint tblID, EcTint rowIndex, EcThost hostID,

OvwObjectID objectID)

SuspendExec - Starts the suspend procedure by calling the SnmpAPISuspend and the

DeputyGate suspend operations.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: // {

//The following function will call the DeputyGate::SuspendExec(...) operation

SnmpAPISuspend (GetTblID (), GetRowIndex (), GetHost (), GetSeconds());

// }

~MsMmSuspend - The destructor for the class.

Arguments:

Return Type:Void

Privilege:Public

6-25 305-CD-029-002

PDL: // {
// }

Associations:

The MsMmSuspend class has associations with the following classes:
ManagementFramework (Aggregation)

6.1.4 Mode Management Dynamic Model

6.1.4.1 Mode Management by an ECS Application

This scenario traces the events associated activating a new mode within the system. This action
causes the subagent to discover the new applications that have been designated to support the
mode. It notifies HP OpenView of these new applications and HP OpenView will register their
associated symbols (icons) on their mode specific submaps. The scenario is depicted in
Figure 6.1-5.

6.1.4.1.1 Beginning Assumptions

The system has been configured for the new mode (refer to paragraph 6.1.1.1.1 for the procedural
activities required). The MMS has been initiated and is waiting in the main event loop for an
operator action.

6.1.4.1.2 Interfaces with Other Subsystems and Segments

CSS - at the application level the CSS services ensure proper mode specific CDS Directory
namespace registration.

6.1.4.1.3 Stimulus

An operator selects Activate Mode from the HP OpenView GUI.

6.1.4.1.4 Participating Classes From the Object Model

HPOV (ManagementFramework)

MsMmModeInit

MsMmMode

MsAgDeputy

6.1.4.1.5 Beginning System, Segment and Subsystem State(s)

The MMS has been initiated and is waiting in the main event loop for an operator action. The mode
entered is a non-ops mode. This is reflected in the fact that a simulation time is prompted for. All
inputs are valid and the mode identifier entered is unique.

6-26 305-CD-029-002

Mode Initiation

Operator EcAgConfig

-

Refer to the Agent Startup Event Trace for more detail
on icon registration and normal executable startup

Select Activate Mode ctor

Prompt for mode
Enter New Mode

Validate Mode
Verify mode does

not exist

ctor

set mode

ovsnmpAPI(ActivateMode(mode, <simTime>)) ActivateMode(mode, <simTime>) RPC
Add mode to

active modes file

DiscoverNow()

Register mode specific executable with HPOV

Prompt for simTime

set simTime

Add mode to
current mode

list

HPOV ovw (GUI) MsMmModeInit MsMmMode CurrentModesFIle MsAgDeputy MsAgDiscoverer ActiveModesTable

6-27
305-C

D
-029-002

Figure 6.1-5. MMS Mode Activation Event Trace

6.1.4.1.6 Ending State

The system has been initialized for the given mode and all of the mode specific applications are
registered within the applicable HP OpenView Session. The symbols that represent the mode's
executables are present on the submap in an inactive state.

6.1.4.1.7 Scenario Description

This description describes the accompanying event trace.

•	 An operator selects "Activate Mode" from the HP Openview GUI ManagementFramework
which triggers the ActivateMode callback.

•	 MsMmModeInit is instantiated and prompts the operator (PromptMode operation) to enter
a mode identifier via the HP Openview GUI ManagementFramework.

•	 MsMmModeInit validates the mode identifier by checking to make sure the mode is unique
and is not currently active via the ValidateMode operation.

•	 MsMmModeInit instantiates the MsMmMode object and sets the mode identifier attribute
within the MsMmMode constructor.

•	 MsMmModeInit prompts the operator to enter a simulation time via the PromptSimTime
operation.

• MsMmModeInit sets the simTime attribute.

•	 MsMmMode adds the new mode identifier to the active modes file via the
UpdateActiveModeList operation .

•	 MsMmModeInit issues an ovsnmpAPI call to send a ActiveMode command to the
MsAgDeputy.

• MsAgDeputy bundles the snmp call within an RPC and sends it to the MsAgDiscoverer

•	 MsAgDiscoverer adds the mode identifier to it's active mode list and then issues a
DiscoverNow operation to look for newly installed applications. Since it will now search
the new configuration directory established in support of the newly activated mode, it will
generate an snmp trap event to HPOV ManagementFramework to register the new
applications/executables. Details from this point on are contained in the Agent event trace
diagrams.

6.1.5 Mode Management Structure

Table 6.1-2 lists the components of Mode Management Service.

Table 6.1-2. Mode Management Components (1 of 2)
Component Name COTS/Custom

MsMmMode Custom (C++ code)

HPOV (Management
Framework)

COTS + custom (ovwAPIs,
ovsnmpAPIs, scripts, callbacks)

MsMmModeInit Custom (C++ code)

MsMmModeTerm Custom (C++ code)

6-28 305-CD-029-002

Table 6.1-2. Mode Management Components (2 of 2)
Component Name COTS/Custom

MsAgDeputy C/C++ code p/o Management
Agent Services

MsAgAgent COTS

MsMmCtrl Custom (C++ code)

MsMmSuspend Custom (C++ code)

MsMmResume Custom (C++ code)

MsMmShutdown Custom (C++ code)

6.1.6 Mode Management Management and Operation

6.1.6.1 System Management Strategy

The Mode Management Service is based on HP OpenView NNM, which generates notifications
when it detects partial failures of its managed components. Components of HP OpenView may be
individually restarted. In the case of a total failure, the managed component may be restarted. All
error messages are logged to the local log file. In the case of a hardware failure of the MSS server,
a hot standby with dual-attached disks for a quick failover will be provided.

6.1.6.2 Operator Interfaces

The Operator Interface to Mode Management is the graphical user interface provided by HP
OpenView Network Node Manager.

6.2 Accountability Management

6.2.1 Accountability Management Overview

The Accountability Management Service provides the capabilities of User Registration, User
Account/Profile Maintenance, the generation of reports from audit trails, and Request Tracking
(includes near real-time reporting of request states as well as non-near real-time reporting of
request resource utilization).

ECS provides for two generic classes of users: guest users and registered users. Guest users are
users that have not formally registered to become registered users. Registered users are those guest
users that have submitted requests for a registered user account, and have had accounts created for
them, based on an approval process. Registered users are allowed access to services and products
beyond those available to guest users.

Guest users are provided the capability to submit a request for a registered user account, which is
captured into a database of pending requests. Operators may access this database of pending
requests in the process of user registration, in order to create a registered user account from a list
of pending requests.

User registration provides the operators the capability to create accounts against requests submitted
by guest users wishing to become authorized ECS users.

User Account/Profile Maintenance includes providing the operator the means to maintain the
created accounts and the user profile information. The user profile contains information about the

6-29 305-CD-029-002

user. This includes the name of the user, a user identification code, the user's primary DAAC, the
organizational affiliation, investigating group (such as an instrument team) affiliation (if any), the
project the user is affiliated with, the name of the PI of the project, the mailing address of the user,
the shipping address to which data needs to be sent, media preferences for orders, the user's
telephone number and the user's electronic mail address (if any). The system provides the
capabilities for the modification and maintenance of accounts with user profiles.

User Account/Profile Maintenance also includes making the user profile available to the various
subsystems, such as the Data Server subsystem and the Billing and Accounting Application
Service, information such as the user's electronic mail address and the shipping address, which are
used for the distribution of data products ordered.

The Audit Trail capability provides the means to verify the integrity of the system. This comprises
the generation of a user audit trail and a security audit trail with data collected from a variety of
sources.

Request Tracking provides the operator the capability to see the status of any of the trackable types
of user requests in near real-time. Trackable types of user requests include: Product Orders, Ingest
Requests, User Requests, and Operator Requests. Request tracking information is provided to this
service by the ECS applications which perform processing on the above specified request types.
In addition to tracking the state of the requests in near real-time, this service also collects resource
utilization on each request and stores the information in a database for cost analysis reports. The
resource utilization is reported back to the request tracking database after the request has completed
processing. The ECS applications report tracking information via the Request Tracking Key
Mechanism. In addition, Request Tracking provides a cost account reporting mechanism which
will generate various reports on the resource utilization cost of the requests which were tracked.

The Request Tracking Key Mechanism is intended for use by the developers of ECS applications
to report request status changes back to a central database to be displayed to an operator in near
real-time. The mechanism is also used to report resource cost that was collected during the life of
the request. The cost data is sent from the ECS application after the request has completed
processing and the utilization data used for cost accounting. The mechanism also accounts for
spawning of requests. When an ECS application creates one or more sub-requests for a request, a
parent-child type of relationship is established in the mechanism so that the spawned requests can
be tracked independently of each other and the operator will be able to get request state information
for the entire tree of requests in near real-time.

6.2.2 Accountability Management Context

The Accountability Management Service, as shown in the external interface context diagram,
interfaces with other subsystems in order to provide access to User Profiles as well as to receive
updates to request tracking information. The interface to the SMC provides the capability for the
Accountability Application Service to send summary accountability data and reports to the SMC.
The Management Database provides access to the management data for the purpose of generating
reports. The Management Agent Service interfaces with the Accountability Management Service
for the purpose to sending management commands, such as a shutdown command, and for events
and faults that are reported by this service. The Accountability Management context diagram is
shown in Figure 6.2-1.

6-30 305-CD-029-002

SMC Accountability
Management ServiceManagement Database

Site
Accountability
Management

Service

This System

Accty Data Requests

Accty Data
Reports

Summary Data and Reports

user profile information

user profile request,
request tracking updates

Request for data

Management Commands

Faults and events

Management Agent
Services

Other Subsystems

Figure 6.2-1. Accountability Management Context Diagram

6.2.3 Accountability Management Object Model

The overview of the Accountability Management Service's object model is shown in Figure 6.2-2.
The details of the classes shown in the overview are found in Figure 6.2-3 through Figure 6.2-7.

6.2.3.1 EcAgEvent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

The EcAgEvent defines a distributed object. It provides the capability to dispatch events

for orderly and prompt resolution should events occur. The SNMP protocol provides the

capability to send traps from agent to SNMP manager. But, the traps are not secure and not

reliable. The solution to these problems are using DCE RPC as the transport mechanism for

security reasons and sending the traps from MSS Server to the management framework

locally. The COTS HP OpenView guarantees the delivery of traps local on one host by

using IPC as opposed to UDP. The ECS applications, the EcAgProxy agent, and the

MsAgMonitor of the MsAgSubagent can send event notifications to the MsAgSubagent.

The MsAgSubagent logs every event into MSS log file. Then, if the severity of the event

equals to or is higher than the infoLevel variable, it sends this event notification further to

the MsAgDeputy on the MSS Server which in turn convert the event to an SNMP trap and

send it locally to the management framework.

6-31 305-CD-029-002

MsAcManager

MsAcAuditTrail

MsAcRegUser

MsAcUsrNameMsAcAddress

MsAcDCEAcct

MsAcUsrProfile

MsAcUsrResUsage

MsAcManagerUI

MsAcReport

MsAcUsrRequestMgr MsAcUserAuditTrail

MsAcUsrProfileMgr

MsAcUsrRequest

MsAcUsrRequestP

MsAcRegUserMgr

MsAcRegUserDB

MsAcUsrProfileP

MsAcUsrNameP

MsAcAddressP

MsAcUsrResUsageP

MsAcTrackingMgr

MsAcTrackingDB

MsAcTrackingUI

EcPriceTableB

EcPfManagedServer

EcRequest

EcOrder
EcSubOrder

EcService

EcRequestEvent

EcOrderEvent EcSubOrderEvent
EcServiceEvent

EcAgEvent

MsAcCostAcctReport

[Public][External]
[Public][External]

[Public][External]

[DISTR OBJ]

[External]

[DISTR OBJ]

[Public][External]

[Public][External]

[DISTR OBJ]

[Public][External]

[Public]

[Public]

[Public]

[Public]

[Public]

[DISTR OBJ]

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

manages

update account balance

updates user profile

communicate with

provide price for cancelled requests

uses

uses

uses

manages

manages

manages

manages

manages

manages

uses
uses

manages

exchanges data with

uses

manages

generates generates

process non-state change sub-order events

update tracking info
generates

process non-state change order events

process non-state change service events

provide cost data

request cost report

6-32
305-C

D
-029-002

[Public]

Figure 6.2-2. Accountability Management Object Model Overview

shipToName

MsAcManager

MsAcUsrProfile

MsAcUsrProfileMgr

MsAcTrackingMgr

MsAcTrackingDB

MsAcTrackingUI

EcPriceTableB

GetOrdersByUser(userID)
GetServicesByUser(userID)
GetOrdersBySite(siteId)
GetServicesBySite(siteId)
GetRequestsBySite(siteId)
GetTrackableItemByParent(itemID)
GetOrderInfo(itemID)
GetOrderInfoByUR(orderUR)
GetServiceInfo(itemID)
GetServiceInfoByUR(serviceUR)
GetRequestInfo(itemID)
GetRequestInfo(orderStruct)
CreateServiceItem(serviceStruct)
CreateRequestItem(requestStruct)
UpdateItemStatus(itemID, state)
UpdateOrderCost(itemID, orderCost)
UpdateRequestCost(itemID, requestCost)
UpdateServiceCost(itemID, serviceCost)

RetrieveOrderList()
RetrieveRequestList()
RetrieveServiceList()
RetrieveOrderRecord()
UpdateOrderRecord()
RetrieveServiceRecord()
UpdateServiceRecord()
RetrieveRequestRecord()
UpdateRequestRecord()

EcRequest

EcOrder EcSubOrder
EcService

shipMethod
distList

EcRequestEvent

EcOrderEvent
EcSubOrderEvent EcServiceEvent

estimatedPrice

EcOrder(RWCString description, enum type, enum state, EcTUR orderUR, RWCString
userId, RWCString homeDAAC, RWCString shipAddress, RWCString shipToName,
RWCString shipMethod, DiskListType distList, EcTLong estimatedPrice)
~EcOrder()

EcAgEvent

EcPfManagedServer

parentId
userId
serviceUR
homeDAAC

EcService(RWCString description, enum type, enum state, EcTLong parentID,
RWCString userId, EcTUR serviceUR, RWCString homeDAAC)
~EcService()

userIdQuery
requestIdQuery
searchString
sortBy
menuScreenCmd
detailScreenCmd
shipScreenCmd

DisplayOrdersByUser(RWCString userId)
DisplayServiceByUser(RWCString userId)
DisplayOrdersForSite(RWCString siteName, StateListType stateList)
DisplayServiceForSite(RWCString siteName, StateListType stateList)
DisplayRequestsForSite(RWCString siteName, StateListType stateList)
DisplayItemsForSite(RWCString siteName, StateListType stateList)
DisplayRqstServByOrder(EcTLong itemId)
DisplayRqstServByRqst(EcTLong itemId)
DisplayRqstServByServ(EcTLong itemId)
DisplayOrderInfo(EcTLong itemId)
DisplayOrderByUR(EcTUR orderUR)
DisplayServiceInfo(EcTLong itemId)
DisplayServiceByUR(EcTUR serviceUR)
DisplayRequestInfo(EcTLong itemId)

parentId

userId serviceUR
homeDAAC

EcOrderEvent(EcTLong itemID, RWString description, requestType type,
requestStateType state, EcTTime timeStateUpdated, requestCost rCost, RWString
userId, RWString homeDAAC, EcTLong parentId, EcTUR serviceUR)
~EcOrderEvent()
ProcessOrderEvent()

requestID
description
type
timeOfLastStateUpdate
state
cpuUtilization
ioUtilization
diskUtilization
requestStartTime
sleepTime
activeTime
totalTime

EcRequest(EcTLong, requestID, RWCString descrip, enum type, EcTTime timeOfLast,
EcTLong cpuUtil, EcTLong ioUtil, EcTLong diskUtil, EcTTime rqStart, EcTTime
SleepT, EcTTime activeT, EcTTime totalTime)
~EcRequest()

orderUR
userId
homeDAAC
shipAddress
shipToName
shipMethod
distList
estimatedPrice

EcOrderEvent(EcTLong itemID, RWString description, requestType type,
requestStateType state, EcTTime timeStateUpdated, requestCost rCost, EcTUR
orderUR, RWString userId, RWString homeDAAC, distList, EcTLong estimatedPrice)
~EcOrderEvent()
ProcessOrderEvent()

parentID

numGranuals
granualList
granualSizeList
granualFormatList
granualMediaList
mediaTypeList
mediaCountList
archiveUtilization
shipDateTime

EcSubOrderEvent(EcTLong itemID, RWString description, requestType type,
requestStateType state, EcTTime timeStateUpdated, requestCost rCost, long
parentID, granListType granualList, granListSizeType granualSizeList, mType
mediaType, long mediaCount, date shipDateTime)
~EcSubOrderEvent()
ProcessSubOrderEvent()

orderUR
userId
homeDAAC
shipAddress

parentID
numGranuals
granualList
granualSizeList
granualFormatList
granualMediaList
mediaTypeList
mediaCountList
archiveUtilization
shipDateTime

EcSubOrder(RWCString description, enum type, enum state, EcTLong parentID,
EcTLong numGranuals, GranListType granualList, GranSizeListType granualSizeList,
GranualFormatListType granFormat, MediaListType mediaTypeList RWCollectionList
mediaCountList)
~EcSubOrder()
GetGranualList(GranListType &granualList)
GetGranualInfo(EcTLong granualId, enum &granMedia, RWCString &granFormat,
EcTLong &granSize)
SetGranualSize(EcTLong granualId, EcTLong granualSize)
GetMediaCount()
SetMediaCount(EcTInt mediaCount)
ProcessSubOrderEvent(RWCString eventDescription)

MsAcCostAcctReport

reportID

MsAcCostAcctReport()
~MsAcCostAcctReport()
Print(RWCString reportId, RWCString destinationID, RWCString reportFormat)
GenCostAcctReport(RWCString myDAAC, RWString groupId, RWCString userId,
RWCString ResourceId)

requestID
description
type
timeOfLastStateUpdate
state
cpuUtilization
ioUtilization
diskUtilization
requestStartTime
idleTime
activeTime
requestDate
lastEventID
cpuUtilAtMethodStart
ioUtilAtMethodStart

EcRequest(RWCString description, enum type, enum state)
~EcRequest()
GetRequestID()
StartCollecting()
StopCollecting()
SetState(state)
GetDiskUtilization()
SetDiskUtilization(diskUtilization)
GetState()
SetState(trackingStateType newState)

- : RWCString

[Public][External]

[DISTR OBJ]

[Public][External]

[DISTR OBJ]

[Public][External]

+ : itemIDList
+ : itemIDList
+
+
+
+ : itemIDList
+ : orderStruct
+ : orderStruct
+ : serviceStruct
+ : serviceStruct
+ : requestStruct
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

+
+
+
+
+
+
+
+
+

[Public]

[Public]

[Public]

[Public]

- : RWCString
- : DistListType

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

[DISTR OBJ]

[Public]

- : EcTLong

+

+[DISTR OBJ]

[Public]

[Public]

- : EcTLong
- : RWCString
- : EcTUR
- : RWCString

+

+

- : RWCString
- : EcTLong
- : RWCString
- : enum
- : enum
- : enum
- : enum

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

- : EcTLong
- : EcTUR
- : RWCString

- : EcTLong
- : RWCString
- : enum
- : EcTTime
- : enum
- : EcTLong
- : EcTLong
- : EcTLong
- : EcTTime
- : EcTTime
- : EcTTime
- : EcTTime

- : EcTUR
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : DistListType
- : EcTLong

+
+ : EcTVoid

- : EcTLong

- : EcTLong
- : GranListType
- : GranSizeListType
- : GranFormatListType
- : GranMediaListType
- : MediaListType
- : RWCollectionList(EcTLong)
- : EcTLong
- : EcTTime

+
+ : EcTVoid

- : EcTUR
- : RWCString
- : RWCString
- : RWCString

- : EcTLong
- : EcTLong
- : GranListType
- : GranSizeListType
- : GranFormatListType
- : GranMediaListType
- : MediaListType
- : RWCollectionList(EcTLong)
- : EcTLong
- : EcTTime

+

+
+ : EcTVoid
+ : EcTVoid

+ : EcTVoid
+ : EcTLong
+ : EcTVoid
+

- : RWCString

+
+
+ : EcTVoid
+ : EcTVoid

- : EcTLong
- : RWCString
- : enum
- : EcTTime
- : enum
- : EcTLong
- : EcTLong
- : EcTLong
- : EcTTime
- : EcTTime
- : EcTTime
- : EcTTime
- : EcTLong
- : EcTLong
- : EcTLong

+
+
+ : EcTLong
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTLong
+ : EcTVoid
+ : trackingStateType
+ : EcTVoid

manages

exchanges data with

uses

update tracking info
update tracking info

generates

generates

process non-state change service events

process non-state change sub-order events

process non-state change order events

updates user profile

provide price for cancelled requests

update account balance

update tracking info

generates

request cost report

provide cost data

6-33
305-C

D
-029-002

Figure 6.2-3. Accountability Management Object Model Detail 1

SetShipAddrStreet2(RWCString)
GetShipAddrStreet2()
SetShipAddrStreet1(RWCString)

MsAcRegUser

MsAcUsrName

MsAcAddress

GetShipAddrStreet1()

MsAcUsrProfile

SetMailAddrFax(RWCString)
GetMailAddrFax()
SetMailAddrPhone(RWCString)
GetMailAddrPhone()
SetMailAddrCountry(RWCString)
GetMailAddrCountry()

MsAcUsrProfileMgr

SetMailAddrZip(RWCString)
GetMailAddrZip()
SetMailAddrState(RWCString)
GetMailAddrState()
SetMailAddrCity(RWCString)
GetMailAddrCity()
SetMailAddrStreet2(RWCString)

MsAcUsrProfileP

MsAcUsrNameP

MsAcAddressP

GetMailAddrStreet2()
SetMailAddrStreet1(RWCString)
GetMailAddrStreet1()
SetExpirationDate(const RWDate)
GetExpirationDate()
SetCreationDate(const RWDate)
GetCreationDate()
SetPrivilegeLevel(RWCString)
GetPrivilegeLevel()
SetMediaPref(RWCString)
GetMediaPref()
SetAccountNumber(RWCString)
GetAccountNumber()
SetPIFirstName(RWCString)

MsAcTrackingMgr

GetPIFirstName()
SetPIMiddleInit(RWCString)
GetPIMiddleInit()
SetPILastName(RWCString)
GetPILastName()
SetPITitle(RWCString)
GetPITitle()
SetProjectName(RWCString)
GetProjectName()
SetSponsor(RWCString)
GetSponsor()
SetAffiliation(RWCString)
GetAffiliation()
SetResearchField(RWCString)
GetResearchField()
SetOrganization(RWCString)
GetOrganization()
SetTelNum(RWCString)
GetTelNum()
SetHomeDAAC(RWCString)
GetHomeDAAC()
SetMailAddress(RWCString)
GetMailAddress()
SetEmailaddress(RWCString)
GetEmailAddress()
SetUserFirstName(RWCString)
GetUserFirstName()
SetUserMiddleInit(RWCString)
GetUserMiddleInit()
SetUserLastName(RWCString)
GetUserLastName()
SetUserTitle(RWCString)
GetUserTitle()
SetUserId(RWCString)
GetUserId()
~MsUserProfile(EcTVoid)
MsUserProfile(EcTVoid)
GetAccountBalance()
SetAccountBalance(EcTLong newBalance)

Update(RWDBUpdater, RWCString, ...)
operator<<(RWDBInserter& MsAcAddressP&)
~MsAcAddressP()
MsAcAddressP(RWDBReader&)
MsAcAddressP(const MsAcAddress&)

MsAcUsrNameP(MsAcUsrName&)
MsAcUsrNameP(RWDBReader&)
operator<<(RWDBInserter&, MsAcUsrNameP&)
update(RWDBUpdater&, RWCString, RWCString, RWCString, RWCString)
~MsAcUsrNameP()

title
lastName
middleInit
firstName

GetTitle()
SetTitle(RWCString)
GetLastName()
SetLastName(RWCString)
GetMiddleInit()
SetMiddleInit(RWCString)
GetFirstName()
SetFirstName(RWCString)
~MsAcUserName()
MsAcUserName()

street1
street2
city
state
country
zip
phone
fax

MsAcAddress()
~MsAcAddress()
SetStreet1(const RWCString)
GetStreet1()
SetStreet2(const RWCString)
GetStreet2()
SetCity(const RWCString)
GetCity()
SetCountry(const RWCString)
GetCountrty()
SetZip(const RWCString)
GetZip()
SetPhone(const RWCString)
GetPhone()
SetFax(const RWCString)
GetFax()

MsAcUsrProfileP(const RWCString&)
MsAcUsrProfileP(RWDBReader&)
MsAcUsrProfileP(MsAcUsrProfile&)
operator<<(RWDBUpdater&, MsAcUsrProfileP&)
operator<<(RWDBInserter&, MsAcUsrProfileP&)

expirationDate
creationDate
privilegeLevel
mediaPref
accountNumber
billAddr
altShipAddr
shipAddr
altMailAddr
mailAddr
PI
projectName
sponsor
affiliation
researchFiled
organization
emailAddr
telNum
homeDAAC
userName
userId
accountBalance

SetAltShipAddrFax(RWCString)
GetAltShipAddrFax()
SetAltShipAddrPhone(RWCString)
GetAltShipAddrPhone()
SetAltShipAddrZip(RWCString)
GetAltShipAddrZip()
SetAltShipState(RWCString)
GetAltShipState()
SetAltShipCountry(RWCString)
GetAltShipCountry()
SetAltShipAddrState(RWCString)
GetAltShipAddrState()
SetAltShipAddrCity(RWCString)
GetAltShipAddrCity()
SetAltShipAddrStree2(RWCString)
GetAltShipAddrStree2()
SetAltShipAddrStreet1(RWCString)
GetAltShipAddrStreet1()
SetAltMailAddrFax(RWCString)
GetAltMailAddrFax()
SetAltMailAddrPhone(RWCString)
GetAltMailAddrPhone()
SetAltMailAddrZip(RWCString)
GetAltMailAddrZip()
SetAltMailAddrState(RWCString)
GetAltMailAddrState()
SetAltMailCountry(RWCString)
GetAltMailCountry()
SetAltMailAddrCity(RWCString)
GetAltMailAddrCity()
SetAltMailAddrStreet2(RWCString)
GetAltMailAddrStreet2()
SetAltMailAddrStreet1(RWCString)
GetAltMailAddrStreet1()
SetBillAddrFax(RWCString)
GetBillAddrFax()
SetBillAddrPhone(RWCString)
GetBillAddrPhone()
SetBillAddrCountry(RWCString)
GetBillAddrCountry()
SetBillAddrZip(RWCString)
GetBillAddrZip()
SetBillAddrState(RWCString)
GetBillAddrState()
SetBillAddtCity(RWCString)
GetBillAddrCity()
SetBillAddtStreet2(RWCString)
GetBillAddrStreet2()
SetBillAddrStreet1(RWCString)
GetBillAddrStreet1()
SetShipAddrFax(RWCString)
GetShipAddrFax()
SetShipAddrPhone(RWCString)
GetShipAddrPhone()
SetShipAddrCountry(RWCString)
GetShipAddrCountry()
SetShipAddrZip(RWCString)
GetShipAddrZip()
SetShipAddrState(RWCString)
GetShipAddrState()
SetShipAddrCity(RWCString)
GetShipAddrCity()

+
+
+

[Public][External]

[Public][External]

+
+
+
+
+
+
+

[DISTR OBJ]

[Public][External]

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ : EcTLong accountBalance
+ : EcTVoid

+
+
+
+
+

+
+
+ : RWDBInserter&
+ : EcTVoid
+

-
-
-
-

+
+
+
+
+
+
+
+
+
+

- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : RWCString

+
+
+ : EcTInt
+ : const RWCString
+ : EcTInt
+ : const RWCString
+ : EcTInt
+ : const RWCString
+ : EcTInt
+ : const RWCString
+ : EcTInt
+ : const RWCString
+ : EcTInt
+ : const RWCString
+ : EcTInt
+ : const RWCString

+
+
+
+ : RWDBUpdater&
+ : RWDBInserter&

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

update account balance

updates user profile

manages

[External] [Public]

Figure 6.2-4. Accountability Management Object Model Detail 2

6-34 305-CD-029-002

MsAcRegUser

MsAcDCEAcct

MsAcUsrProfile

MsAcUsrResUsage

MsAcRegUserMgr

MsAcUsrResUsageP

name
userID
userId

DeleteRegUser()
CreateRegUser()
UpdateRegUser()
MsAcRegUser()
~MsAcRegUser()
SetUserId(RWCString userId)
GetUserId(RWCString &userId)
GetProfile(RWCString userId)
SetProfile(RWCString userId)
GetResUsage(RWCString userId)
SetResUsage(RWCString userId)
GetDCEAcct(RWCString userId)
SetDCEAcct(RWCString userId)

MsAcUsrResUsageP(RWDBReader&)
MsAcUsrResUsageP(const MsAcUsrResUsage&)
MsAcUsrResUsageP(const RWCString&)
operator<<(RWDBInserter&, MsAcUsrResUsageP&)
operator<<(RWDBUpdater&, MsAcUsrResUsageP&)
~MsAcUsrResUsageP()

cpuLimit
cpuUsage
memoryLimit
memoryUsage
diskLimit
diskUsage
networkLimit
networkUsage
dataLimit
dataUsage
orderLimit
orderUsage

MsAcUsrResUsage()
~MsAcUsrResUsage()
GetCpuLimit(cpuLimit)
SetCpuLimit(cpuLimit)
GetCpuUsage(cpuUsage)
SetCpuUsage(cpuUsage)
GetMemoryLimit(memoryLimit)
SetMemoryLimit(memoryLimit)
GetMemoryUsage(memoryUsage)
SetMemoryUsage(memoryUsage)
GetDiskLimit(diskLimit)
SetDiskLimit(diskLimit)
GetDiskUsage(diskUsage)
SetDiskUsage(diskUsage)
GetNetwrokLimit(networkLimit)
SetNetworkLimit(networkLimit)
GetNetworkUsage(networkUsage)
SetNetwrokUsage(networkUsage)
GetDataLimit(dataLimit)
SetDataLimit(dataLimit)
GetDataUsage(dataUsage)
SetDataUsage(dataUsage)
GetOrderLimit(orderLimit)
SetOrderLimit(orderLimit)
GetOrderUsage(orderUsage)
SetOrderUsage(orderUsage)
SetResUsage(EcTInt cpuLimit, cpuUsage, memoryLimit, memoryUsage, diskLimit,
diskUsage, netwo)
GetResUsage(EcTInt &cpuLimit, &cpuUsage, &memoryLimit, &memoryUsage, &diskLimit,
&diskUsage,)

principal
group
organization
password

MsAcDCEAcct()
~MsAcDCEAcct()
CreatePrincipal(RWCString userId)
CreateAccount(RWCString userId)
DeletePrincipal(RWCString userId)
DeleteAccount(RWCString userId)
UpdatePrincipal(RWCString userId)
UpdateAccount(RWCString userId)
GetPrincipal(RWCString userId)
GetAccount(RWCString userId)

[External]

- : RWCString

+
+
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

+
+
+
+ : RWDBInserter&
+ : RWDBUpdater&
+

- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt

+
+
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+ : EcTVoid
+ : EcTInt
+

+

- : RWCString
- : RWCString
- : RWCString
- : RWCString

+
+
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

manages

[Public]

6-35
305-C

D
-029-002

Figure 6.2-5. Accountability Management Object Model Detail 3

MsAcManagerMsAcManagerUI

MsAcUsrRequestMgr

MsAcUsrRequest

MsAcUsrRequestP

MsAcUsrRequestP()
~MsAcUsrRequestP()

status
userReqId
operator
processDate
requestDate
expirationDate
mediaPref
accountNumber
billAddr
shipAddr
mailAddr
PI
projectName
sponsor
affiliation
researchFiled
organization
emailAddr
telNum
homeDAAC
userName
usrRequestId

GetStatus(RWCString userReqId)
SetStatus(RWCString userReqId)
GetUserRequest(MsAcUserRequest)
SetUserRequest(MsAcUserRequest)
GetUserRequestId(RWCString userReqId)
SetUerRequestId(RWCString userReqId)
~MsAcUserRequest()
MsAcUserRequest()
SetOperator(RWCString)
GetOperator()
SetProcessDate(RWCString)
GetProcessDate()
SetRequestDate(RWCString)
GetRequestDate()
SetStatus(RWCString)
GetStatus()
SetBillAddrFax(RWCString)
GetBillAddrFax()
SetBillAddrPhone(RWCString)
GetBillAddrPhone()
SetBillAddrCountry(RWCString)
GetBillAddrCountry()
SetBillAddrZip(RWCString)
GetBillAddrZip()
SetBillAddrState(RWCString)
GetBillAddrState()
SetBillAddtCity(RWCString)
GetBillAddrCity()
SetBillAddtStreet2(RWCString)
GetBillAddrStreet2()
SetBillAddrStreet1(RWCString)
GetBillAddrStreet1()
SetShipAddrFax(RWCString)
GetShipAddrFax()
SetShipAddrPhone(RWCString)
GetShipAddrPhone()
SetShipAddrCountry(RWCString)
GetShipAddrCountry()
SetShipAddrZip(RWCString)
GetShipAddrZip()
SetShipAddrState(RWCString)
GetShipAddrState()
SetShipAddrCity(RWCString)
GetShipAddrCity()
SetShipAddrStreet2(RWCString)
GetShipAddrStreet2()
SetShipAddrStreet1(RWCString)
GetShipAddrStreet1()
SetMailAddrFax(RWCString)
GetMailAddrFax()
SetMailAddrPhone(RWCString)
GetMailAddrPhone()
SetMailAddrCountry(RWCString)
GetMailAddrCountry()
SetMailAddrZip(RWCString)
GetMailAddrZip()
SetMailAddrState(RWCString)
GetMailAddrState()
SetMailAddrCity(RWCString)
GetMailAddrCity()
SetMailAddrStreet2(RWCString)
GetMailAddrStreet2()
SetMailAddrStreet1(RWCString)
GetMailAddrStreet1()
SetExpirationDate(const RWDate)
GetExpirationDate()
SetMediaPref(RWCString)
GetMediaPref()
SetAccountNumber(RWCString)
GetAccountNumber()
SetPIFirstName(RWCString)
GetPIFirstName()
SetPIMiddleInit(RWCString)
GetPIMiddleInit()
SetPILastName(RWCString)
GetPILastName()
SetPITitle(RWCString)
GetPITitle()
SetProjectName(RWCString)
GetProjectName()
SetSponsor(RWCString)
GetSponsor()
SetAffiliation(RWCString)
GetAffiliation()
SetResearchField(RWCString)
GetResearchField()
SetOrganization(RWCString)
GetOrganization()
SetTelNum(RWCString)
GetTelNum()
SetHomeDAAC(RWCString)
GetHomeDAAC()
SetMailAddress(RWCString)
GetMailAddress()
SetEmailaddress(RWCString)
GetEmailAddress()
SetUserFirstName(RWCString)
GetUserFirstName()
SetUserMiddleInit(RWCString)
GetUserMiddleInit()
SetUserLastName(RWCString)
GetUserLastName()
SetUserTitle(RWCString)
GetUserTitle()
SetUstRequestId(RWCString)
GetUsrRequestId()
~MsAcUsrRequest()
MsAcUsrRequest()

MsAcUserRequestMgr()
~MsAcUserRequestMgr()
CreateUserRequest(RWCString userReqId)
DeleteUserRequest(RWCString userReqId)
UpdateUserRequest(RWCString userReqId)
RetrieveUserRequest(RWCString userReqId)
RetrieveUserRequestList()

[DISTR OBJ]

[External]

+
+

- : RWCString
- : RWCString

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

communicate with

uses
manages

uses

manages

[External] [Public]

Figure 6.2-6. Accountability Management Object Model Detail 4

6-36 305-CD-029-002

MsAcManager

MsAcAuditTrail

MsAcRegUser

MsAcUsrProfile

MsAcManagerUI

MsAcReport

MsAcUsrRequestMgr
MsAcUserAuditTrail

MsAcUsrProfileMgr

MsAcUsrRequest

MsAcRegUserMgr

MsAcRegUserDB

MsAcTrackingMgr

EcPfManagedServer

EcOrder

EcSubOrder

MsAcUserAuditTrail()
~MsAcUserAuditTrail()

MsAcAuditTrail()
~MsAcAuditTrail()
GenerateAuditTrail()

reportId

MsAcReport()
~MsAcReport()
GenerateReport(EcTInt reportId)

MsAcManager()
~MsAcManager()
GenerateReport()
GenerateAduitTrail()
SendSummaryDataToSMC()

MsAcUserProfileMgr()
~MSAcUserProfileMgr()
RetrieveProfile(RWCString userId)
RetrieveProfile(RWCString lastname,
RetrieveProfile(RWCString accountNumber)
RetrieveProfileList()
InsertProfile()
UpdateProfile()
DeleteProfile()
ReplicateProfileToSMC()

MsAcManagerUI()
~MsAcManagerUI()
GenerateReport()
DisplayPendingRequest(EcTInt guestUserId)
DisplayPendingRequestList()
RetrievePendingRequstList()
DeletePendingRequest(EcTInt guestUserId)
ApproveRequest(RWCString regUserId)
DisplayRegUser(EcTInt guestUserId)
DisplayRegUserList(RWCString regUserId)
RetrieveRegUserList()
DeleteRegUser(RWCString regUserId)
DsiplayProfile()
GenerateAuditTrail()
GenerateReport(EcTInT RepordId)
SendSummaryDataToSMC()

MsAcRegUserMgr()
~MsAcRegUserMgr()
CreateRegUser(const RWCString&)
DeleteRegUser(const RWCString&)
UpdateRegUser(MsAcRegUser&)
NotifyUser()
PrintUserInfor()
RetrieveRegUser(const RWCString&)
RetrieveRegUserList(RWSlistCollectables&)
RetrieveRegUserList()
RetrieveRegUser()
UpdateRegUser()
DeleteRegUser()
CreateRegUser()

MsAcRegUserDB(RWCString&, RWCString&, RWCString&, RWCString&, RWCString&)
~MsAcRegUserDB()
Initialize(RWCString&, RWCString&, RWCString&, RWCString&, RWCString&)
Close()
Instance()
CreateRegUser(RWCString&)
GetRegUser(RWCString&)
UpdateRegUser(MsAcRegUserP&)
DeleteRegUser(RWCString&)
AddUserProfile(MsAcUsrProfileP&)
DeleteUserProfile(RWCString&)
UpdateUserProfile(MsAcUsrProfile&)
GetUserProfile(RWCString&)
GetProfileList(RWSListCollectables&)
ProfileExists(RWCString&)
RegUserExists(RWCString&)
ResourceDataExists(RWCString&)

[Public][External]

[DISTR OBJ]

[External]

[DISTR OBJ]

[Public][External]

[Public][External]

[Public]

[Public]

+
+

+
+
+

-

+
+
+

+
+
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

+
+
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

+
+
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid

+ : EcTVoid
+ : EcTVoid
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTVoid
+ : EcTVoid
+ : MsAcRegUser*
+ : EcTInt

+
+
+ : EcTVoid
+ : EcTVoid
+ : MsAcRegUserDB&
+ : EcTInt
+ : MsAcRegUserP*
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : EcTInt
+ : MsAcUsrProfile*
+ : EcTVoid
+ : EcTInt
+ : EcTInt
+ : EcTInt

manages communicate with
uses

uses

uses

manages

manages

manages

manages

uses

manages

manages

process non-state change order events

process non-state change service events

uses

manages

firstName, middleInital)

EcService

[Public]

process non-state change sub-order events

[Public]

6-37
305-C

D
-029-002

Figure 6.2-7. Accountability Management Object Model Detail 5

Attributes:

None

Operations:

None

Associations:

The EcAgEvent class has associations with the following classes:
None

6.2.3.2 EcOrder Class

Parent Class:EcRequest

Public:Yes

Distributed Object:No

Purpose and Description:

This is a public class which is used by ECS applications to collect resource utilizations

associated with an order type of request. The class is also used by the application to report

the state of the order when the order state changes. Objects in this class should remain until

the application has finished processing the associated order request. An order type of

request is the top most root of a hierarchy of sub-classes and services that is associated with

a Product Data Order request from an ECS user.

Attributes:

distList - The distribution list for the product.

Data Type:DistListType

Privilege:Private

Default Value:

estimatedPrice - The price which was reported to the ECS user and the price which is to

be decremented from the avaliable balance of the user.

Data Type:EcTLong

Privilege:Private

Default Value:

homeDAAC - The site at which the user is registered, who placed the product order.

Data Type:RWCString

Privilege:Private

Default Value:

6-38 305-CD-029-002

orderUR - This is the UR for the order which is reported back to the ECS user. This is

stored in the tracking database so that the order tracking information can be retrieved by the

Order UR.

Data Type:EcTUR

Privilege:Private

Default Value:

shipAddress - Mailing address that the products produced/retrieved for the order are to be

shipped.

Data Type:RWCString

Privilege:Private

Default Value:

shipMethod - The method of shipment - how the product(s) are to be sent to the requesting

user.

Data Type:RWCString

Privilege:Private

Default Value:

shipToName - The name to which the products are to be addressed.

Data Type:RWCString

Privilege:Private

Default Value:

userId - The unique ECS user identification of the user who placed the order.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

EcOrder - The constructor for the class. The order related information is initialized and

the information, including the starting state, are send to the request tracking server. In

addition, the resource utilization counters are initialized to zero.

Arguments:RWCString description, enum type, enum state, EcTUR orderUR, RWCString

userId, RWCString homeDAAC, RWCString shipAddress, RWCString shipToName,

RWCString shipMethod, DiskListType distList, EcTLong estimatedPrice

Return Type:Void

Privilege:Public

PDL: No PDL

~EcOrder - Default destructor for the class. The collected resource utilization and the

final state of the order are sent to the request tracking server.

Arguments:

6-39 305-CD-029-002

Return Type:Void
Privilege:Public
PDL: No PDL

Associations:

The EcOrder class has associations with the following classes:
Class: EcOrderEvent generates
Class: EcPfManagedServer processnon-statechangeorderevents

6.2.3.3 EcOrderEvent Class

Parent Class:EcRequestEvent

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is a public, distributed object whose purpose is to report information collected about

an order type of request. An order type of request is the root of a request hierarchy structure

that was generated based on a Product Order request from an ECS user. Objects of this

class are created with the information to be reported and processed (sent to the request

tracking server) and then destroyed. These objects only need to stay around long enough

for the event to be processed.

Attributes:

distList - The distribution list for the product.

Data Type:DistListType

Privilege:Private

Default Value:

estimatedPrice - The price which was reported to the ECS user and the price which is to

be decremented from the avaliable balance of the user.

Data Type:EcTLong

Privilege:Private

Default Value:

homeDAAC - The site at which the user is registered, who placed the product order.

Data Type:RWCString

Privilege:Private

Default Value:

orderUR - This is the UR for the order which is reported back to the ECS user. This is

stored in the tracking database so that the order tracking information can be retrieved by the

Order UR.

6-40 305-CD-029-002

Data Type:EcTUR

Privilege:Private

Default Value:

shipAddress - Mailing address that the products produced/retrieved for the order are to be

shipped.

Data Type:RWCString

Privilege:Private

Default Value:

shipMethod - The method of shipment - how the product(s) are to be sent to the requesting

user.

Data Type:RWCString

Privilege:Private

Default Value:

shipToName - The name to which the products are to be addressed.

Data Type:RWCString

Privilege:Private

Default Value:

userId - The unique ECS user identification of the user who placed the order.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

EcOrderEvent - Constructor for the class. The information to be reported to the request

tracking server is initialized.

Arguments:EcTLong itemID, RWString description, requestType type, requestStateType

state, EcTTime timeStateUpdated, requestCost rCost, EcTUR orderUR, RWString userId,

RWString homeDAAC, distList, EcTLong estimatedPrice

PDL: No PDL

ProcessOrderEvent - This method takes the information which was set in the class and

sends the information to the request tracking server.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

~EcOrderEvent - Default constructor for the class. This method cleans up the order event

object by removing any memory allocated for the attributes.

6-41 305-CD-029-002

Arguments:
Return Type:Void
Privilege:Public
PDL: No PDL

Associations:

The EcOrderEvent class has associations with the following classes:
Class: EcOrder generates

6.2.3.4 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port

monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class

also starts a thread that triggers scheduled events (i.e. polling ECS application's

performance metrics).

Attributes:

None

Operations:

None

Associations:

The EcPfManagedServer class has associations with the following classes:
Class: EcOrder processnon-statechangeorderevents
Class: EcService processnon-statechangeserviceevents
Class: EcSubOrder processnon-statechangesub-orderevents

6.2.3.5 EcPriceTableB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents a public and distributed class that holds the prices of every billable

item in the ECS inventory of products and services. Price of hard media and standard

6-42 305-CD-029-002

shipping costs are also maintained in this table.

Attributes:

None

Operations:

None

Associations:

The EcPriceTableB class has associations with the following classes:

Class: MsAcTrackingMgr providepriceforcancelledrequests

6.2.3.6 EcRequest Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is an abstract class which represents all types of requests which are tracked in the ECS

system. This class contains the attributes and operations which are common to all of the

request types. The objects which are created from the sub-classes are used to track resource

utilization of the associated system request types as well as to maintain and report the

current state of the associated system request to the request tracking server.

Attributes:

activeTime - This is a resource utilization counter which contains the approximate amount

of real-time that the request has been actively processed.

Data Type:EcTTime

Privilege:Private

Default Value:

cpuUtilAtMethodStart - This attribute is set to the current value of the cpu counter of the

system when resource utilization collection is started. This value is then used to calculate

the amount of cpu which was used during the collection period.

Data Type:EcTLong

Privilege:Private

Default Value:

cpuUtilization - The running total amount of cpu processing which has been used while

processing this request.

Data Type:EcTLong

Privilege:Private

6-43 305-CD-029-002

Default Value:

description - A textual description of the request.

Data Type:RWCString

Privilege:Private

Default Value:

diskUtilization - The running total amount of disk utilization which has been used while

processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

idleTime - This is a resource utilization counter which contains the approximate amount

of real-time that the request has been idle.

Data Type:EcTTime

Privilege:Private

Default Value:

ioUtilAtMethodStart - This attribute is set to the current value of the I/O utilization

counter of the system when resource utilization collection is started. This value is then used

to calculate the amount of I/O utilization which was used during the collection period.

Data Type:EcTLong

Privilege:Private

Default Value:

ioUtilization - The running total amount of I/O utilization which has been used while

processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

lastEventID - This is the event identification of the last event that was reported to the MSS

event logging capability. This event ID allows an operator to browse through the event log

chain for the request in order to show the history of state changes as well as to see any other

signifigant events associated with this request.

Data Type:EcTLong

Privilege:Private

Default Value:

requestDate - The date/time at which the request started to be processed.

Data Type:EcTTime

Privilege:Private

Default Value:

6-44 305-CD-029-002

requestID - A unique identification of the request.

Data Type:EcTLong

Privilege:Private

Default Value:

requestStartTime - The date/time at which the request started to be processed.

Data Type:EcTTime

Privilege:Private

Default Value:

state - This is the current state of the request.

Data Type:enum

Privilege:Private

Default Value:

timeOfLastStateUpdate - This is the time at which the current state was changed.

Data Type:EcTTime

Privilege:Private

Default Value:

type - The type of the request being processed.

Data Type:enum

Privilege:Private

Default Value:

Operations:

EcRequest - This is the constructor for the object. This method sets the attributes of the

request object to the passed values and initializes the resource utilization totals to zero.

Arguments:RWCString description, enum type, enum state

Return Type:Void

Privilege:Public

PDL: No PDL

GetDiskUtilization - Returns the current value of the disk utilization attribute.

Arguments:

Return Type:EcTLong

Privilege:Public

PDL: No PDL

GetRequestID - Returns the value of the request ID attribute.

Arguments:

Return Type:EcTLong

Privilege:Public

6-45 305-CD-029-002

PDL: No PDL

GetState - Returns the current value of the request state attribute.

Arguments:

Return Type:trackingStateType

Privilege:Public

PDL: No PDL

ProcessEvent - No description

Arguments:RWCString eventDescription

PDL: No PDL

SetDiskUtilization -

Arguments:diskUtilization

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetState - This method sets the current value of the request state attribute to the passed

value.

Arguments:state

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetState - This method sets the current value of the request state attribute to the passed

value.

Arguments:trackingStateType newState

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

StartCollecting - This method reads from the system the current values of particular

resource counters and stores them in attributes. This method should be called at the

beginning of a method which processes the request associated with this object.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

StopCollecting - This method reads from the system the current values of particular

resource counters and subtracts from them the associated values stored in the attributes.

The resulting value will be added to the running total utilization attribute. This method

should be called at the end of a method which processes the request associated with this

object.

6-46 305-CD-029-002

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

~EcRequest - This is the default destructor of the object.

memory which was allocated to attributes within this object.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:

The EcRequest class has associations with the following classes:
None

6.2.3.7 EcRequestEvent Class

Parent Class:EcAgEvent

Public:Yes

Distributed Object:Yes

Purpose and Description:

This method cleans up any

This is an abstract class which represents all types of requests event objects which are used
to report information collected about a request. This class contains the attributes and
operations which are common to all of the request event types. The objects which are
created from the sub-classes are used to report resource utilization of the associated system
request types as well as to report the current state of the associated system request to the
request tracking server.

Attributes:

activeTime - This is a resource utilization counter which contains the approximate amount

of real-time that the request has been actively processed.

Data Type:EcTTime

Privilege:Private

Default Value:

cpuUtilization - The running total amount of cpu processing which has been used while

processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

6-47 305-CD-029-002

description - A textual description of the request.

Data Type:RWCString

Privilege:Private

Default Value:

diskUtilization - The running total amount of disk utilization which has been used while

processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

ioUtilization - The running total amount of I/O utilization which has been used while

processing this request.

Data Type:EcTLong

Privilege:Private

Default Value:

requestID - A unique identification of the request.

Data Type:EcTLong

Privilege:Private

Default Value:

requestStartTime - The date/time at which the request started to be processed.

Data Type:EcTTime

Privilege:Private

Default Value:

sleepTime - This is a resource utilization counter which contains the approximate amount

of real-time that the request has not been actively processed.

Data Type:EcTTime

Privilege:Private

Default Value:

state - This is the current state of the request.

Data Type:enum

Privilege:Private

Default Value:

timeOfLastStateUpdate - This is the time at which the current state was changed.

Data Type:EcTTime

Privilege:Private

Default Value:

totalTime - This is the total amount of real-time which was required to process the request.

Data Type:EcTTime

6-48 305-CD-029-002

Privilege:Private

Default Value:

type - The type of the request being processed.

Data Type:enum

Privilege:Private

Default Value:

Operations:

EcRequest - No description

Arguments:EcTLong, requestID, RWCString descrip, enum type, EcTTime timeOfLast,

EcTLong cpuUtil, EcTLong ioUtil, EcTLong diskUtil, EcTTime rqStart, EcTTime SleepT,

EcTTime activeT, EcTTime totalTime

PDL: No PDL

~EcRequest - No description

Arguments:

PDL: No PDL

Associations:

The EcRequestEvent class has associations with the following classes:
None

6.2.3.8 EcService Class

Parent Class:EcRequest

Public:Yes

Distributed Object:No

Purpose and Description:

This is a public class which is used by ECS applications to collect resource utilizations

associated with service type of request. The class is also used by the application to report

the state of the service when the service state changes. Objects in this class should remain

until the application has finished processing the associated service request. A service type

of request is a request which is not associated with retrieving a specific product, a service

could be spawned from a sub-order type of request if the ECS application spawns a set of

processing which does not result in product. a service type of request could be the root of

a service request hierarchy for tracking ECS requests which are not Product Orders.

Attributes:

homeDAAC - The site at which the user is registered, who placed the product order.
Data Type:RWCString

6-49 305-CD-029-002

Privilege:Private

Default Value:

parentId - This is the request ID of the service or sub-order type of request which spawned

this service type of request.

Data Type:EcTLong

Privilege:Private

Default Value:

serviceUR - This is the UR for the service which is reported back to the ECS user. This is

stored in the tracking database so that the service tracking information can be retrieved by

the Service UR. This attribute is only used if the service is the root of the service hierarchy.

Data Type:EcTUR

Privilege:Private

Default Value:

userId - The unique ECS user identification of the user who placed the service. This

attribute is only used if the service is the root of the service hierarchy.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

EcService - The constructor for the class. The service related information is initialized

and the information, including the starting state, are send to the request tracking server. In

addition, the resource utilization counters are initialized to zero.

Arguments:RWCString description, enum type, enum state, EcTLong parentID,

RWCString userId, EcTUR serviceUR, RWCString homeDAAC

Return Type:Void

Privilege:Public

PDL: No PDL

~EcService - Default destructor for the class. The collected resource utilization and the

final state of the service are sent to the request tracking server.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:

The EcService class has associations with the following classes:
Class: EcServiceEvent generates

6-50 305-CD-029-002

Class: EcPfManagedServer processnon-statechangeserviceevents

EcOrder (Aggregation)

EcSubOrder (Aggregation)

6.2.3.9 EcServiceEvent Class

Parent Class:EcRequestEvent

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is a public, distributed object whose purpose is to report inform

Attributes:

homeDAAC - The site at which the user is registered, who placed the product order or

service.

Data Type:RWCString

Privilege:Private

Default Value:

parentId - This is the request ID of the service or sub-order type of request which spawned

this service type of request.

Data Type:EcTLong

Privilege:Private

Default Value:

serviceUR - This is the UR for the service which is reported back to the ECS user. This is

stored in the tracking database so that the service tracking information can be retrieved by

the Service UR. This attribute is only used if the service is the root of the service hierarchy.

Data Type:EcTUR

Privilege:Private

Default Value:

Operations:

EcOrderEvent - Constructor for the class. The information to be reported to the request

tracking server is initialized.

Arguments:EcTLong itemID, RWString description, requestType type, requestStateType

state, EcTTime timeStateUpdated, requestCost rCost, RWString userId, RWString

homeDAAC, EcTLong parentId, EcTUR serviceUR

PDL: No PDL

ProcessOrderEvent - This method takes the information which was set in the class and

sends the information to the request tracking server.

6-51 305-CD-029-002

Arguments:

PDL: No PDL

~EcOrderEvent - Default constructor for the class. This method cleans up the service

event object by removing any memory allocated for the attributes.

Arguments:

PDL: No PDL

Associations:

The EcServiceEvent class has associations with the following classes:
Class: EcService generates

6.2.3.10 EcSubOrder Class

Parent Class:EcRequest

Public:Yes

Distributed Object:No

Purpose and Description:

This is a public class which is used by ECS applications to collect resource utilizations

associated with sub-order type of request. The class is also used by the application to report

the state of the sub-order when the sub-order state changes. Objects in this class should

remain until the application has finished processing the associated sub-order request. A

sub-order type of request is a child of a hierarchy of sub-orders and services that is

associated with a Product Data Order request from an ECS user. At the top of this hierarchy

is an order type of request.

Attributes:

archiveUtilization - This attribute contains the total amount of achive utilization which

has been collected for this sub-order.

Data Type:EcTLong

Privilege:Private

Default Value:

granualFormatList - This attribute is a list of granual formats. There is one format list

entry for each granual which is associated with this sub-order.

Data Type:GranFormatListType

Privilege:Private

Default Value:

granualList - This attribute is a list of granual identifications which are associated with

this sub-order.

Data Type:GranListType

6-52 305-CD-029-002

Privilege:Private

Default Value:

granualMediaList - This attribute is a list of media types. There is one media type list

entry for each granual which is associated with this sub-order.

Data Type:GranMediaListType

Privilege:Private

Default Value:

granualSizeList - This attribute is a list of granual sizes.

Data Type:GranSizeListType

Privilege:Private

Default Value:

lastEventId - This is the event identification of the last event that was reported to the MSS

event logging capability for this sub-order. This event ID allows the operator to browse

through the event log chain for the sub-order in order to show the history of state changes

as well as to see any other signifigant events associated with this sub-order.

mediaCountList - This attribute contains a list of media counts. A sub-order could have

more than one type of media being produced from it. This attribute contains the total

number of pieces of media which have been produced of each media type.

Data Type:RWCollectionList(EcTLong)

Privilege:Private

Default Value:

mediaTypeList - This attribute contains a list of media types.

more than one tyep of media being produced from it.

Data Type:MediaListType

Privilege:Private

Default Value:

A sub-order could have

numGranuals - This attribute contains the number of data granuals which will be

produced/retrieved as part of the processing of this sub-order.

Data Type:EcTLong

Privilege:Private

Default Value:

parentID - This is the unique request ID of the order or sub-order which spawned the sub

order associated with this object.

Data Type:EcTLong

Privilege:Private

Default Value:

shipDateTime - This is the actual date and time when the products associated with this

6-53 305-CD-029-002

request were prepared for shipment.

Data Type:EcTTime

Privilege:Private

Default Value:

Operations:

EcRequestTracker - No description

Arguments:

PDL: No PDL

GetGranualInfo - This method returns the detailed information for a requested granual.

Arguments:EcTLong granualId, enum &granMedia, RWCString &granFormat, EcTLong

&granSize

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

GetGranualList - This method returns the list of granual IDs associated with this sub

order.

Arguments:GranListType &granualList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

GetMediaCount - This method returns the number of media that have been used when

producing the data associated with this sub-order.

Arguments:

Return Type:EcTLong

Privilege:Public

PDL: No PDL

SetGranualSize - This sets the size of a particular granual associated with this sub-order.

Arguments:EcTLong granualId, EcTLong granualSize

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetMediaCount - This method sets the number of media that have been used when

producing the data associated with this sub-order.

Arguments:EcTInt mediaCount

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-54 305-CD-029-002

~EcRequestTracker - No description

Arguments:

PDL: No PDL

Associations:

The EcSubOrder class has associations with the following classes:
Class: EcSubOrderEvent generates
Class: EcPfManagedServer processnon-statechangesub-orderevents
EcOrder (Aggregation)
EcSubOrder (Aggregation)

6.2.3.11 EcSubOrderEvent Class

Parent Class:EcRequestEvent

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is a public, distributed object whose purpose is to report information collected about

a sub-order type of request. A sub-order type of request is a child of a hierarchy of sub

orders and services that is associated with a Product Data Order request from an ECS user.

At the top of this hierarchy is an order type of request. Objects of this class are created with

the information to be reported and processed (sent to the request tracking server) and then

destroyed. These objects only need to stay around long enough for the event to be

processed.

Attributes:

archiveUtilization - This attribute contains the total amount of achive utilization which

has been collected for this sub-order.

Data Type:EcTLong

Privilege:Private

Default Value:

granualFormatList - This attribute is a list of granual formats. There is one format list

entry for each granual which is associated with this sub-order.

Data Type:GranFormatListType

Privilege:Private

Default Value:

granualList - This attribute is a list of granual identifications which are associated with

this sub-order.

Data Type:GranListType

6-55 305-CD-029-002

Privilege:Private

Default Value:

granualMediaList - This attribute is a list of media types. There is one media type list

entry for each granual which is associated with this sub-order.

Data Type:GranMediaListType

Privilege:Private

Default Value:

granualSizeList - This attribute is a list of granual sizes.

Data Type:GranSizeListType

Privilege:Private

Default Value:

mediaCountList - This attribute contains a list of media counts. A sub-order could have

more than one type of media being produced from it. This attribute contains the total

number of pieces of media which have been produced of each media type.

Data Type:RWCollectionList(EcTLong)

Privilege:Private

Default Value:

mediaTypeList - This attribute contains a list of media types. A sub-order could have

more than one tyep of media being produced from it.

Data Type:MediaListType

Privilege:Private

Default Value:

numGranuals - This attribute contains the number of data granuals which will be

produced/retrieved as part of the processing of this sub-order.

Data Type:EcTLong

Privilege:Private

Default Value:

parentID - This is the unique request ID of the order or sub-order which spawned the sub

order associated with this object.

Data Type:EcTLong

Privilege:Private

Default Value:

shipDateTime - This is the actual date and time when the products associated with this

request were prepared for shipment.

Data Type:EcTTime

Privilege:Private

Default Value:

6-56 305-CD-029-002

userId - The unique user Identification of the ECS user who submitted the original Product
Order request.

Operations:

EcSubOrderEvent - Constructor for the class. The information to be reported to the

request tracking server is initialized.

Arguments:EcTLong itemID, RWString description, requestType type, requestStateType

state, EcTTime timeStateUpdated, requestCost rCost, long parentID, granListType

granualList, granListSizeType granualSizeList, mType mediaType, long mediaCount, date

shipDateTime

PDL: No PDL

ProcessSubOrderEvent - This method takes the information which was set in the class

and sends the information to the request tracking server.

Arguments:

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

~EcSubOrderEvent - Default constructor for the class. This method cleans up the sub

order event object by removing any memory allocated for the attributes.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:

The EcSubOrderEvent class has associations with the following classes:
Class: EcSubOrder generates

6.2.3.12 MsAcAddress Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

Attributes:

city
Data Type:RWCString
Privilege:Private

6-57 305-CD-029-002

Default Value:

country
Data Type:RWCString
Privilege:Private
Default Value:

fax
Data Type:RWCString
Privilege:Private
Default Value:

phone
Data Type:RWCString
Privilege:Private
Default Value:

state
Data Type:RWCString
Privilege:Private
Default Value:

street1
Data Type:RWCString
Privilege:Private
Default Value:

street2
Data Type:RWCString
Privilege:Private
Default Value:

zip
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

GetCity
Arguments:
Return Type:const RWCString
Privilege:Public

6-58 305-CD-029-002

GetCountrty
Arguments:

Return Type:const RWCString

Privilege:Public

GetFax
Arguments:

Return Type:const RWCString

Privilege:Public

GetPhone
Arguments:

Return Type:const RWCString

Privilege:Public

GetStreet1
Arguments:

Return Type:const RWCString

Privilege:Public

GetStreet2
Arguments:

Return Type:const RWCString

Privilege:Public

GetZip
Arguments:

Return Type:const RWCString

Privilege:Public

MsAcAddress
Arguments:
Return Type:Void
Privilege:Public

SetCity
Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetCountry
Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

6-59 305-CD-029-002

SetFax
Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetPhone
Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetStreet1
Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetStreet2
Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

SetZip
Arguments:const RWCString
Return Type:EcTInt
Privilege:Public

~MsAcAddress
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcAddress class has associations with the following classes:
MsAcUsrProfile (Aggregation)

6.2.3.13 MsAcAddressP Class

Parent Class:MsAcAddress

Attributes:

All Attributes inherited from parent class

6-60 305-CD-029-002

Operations:

MsAcAddressP
Arguments:RWDBReader&
Return Type:Void
Privilege:Public

MsAcAddressP
Arguments:const MsAcAddress&
Return Type:Void
Privilege:Public

Update
Arguments:RWDBUpdater, RWCString, ...
Return Type:Void
Privilege:Public

operator<<
Arguments:RWDBInserter& MsAcAddressP&
Return Type:Void
Privilege:Public

~MsAcAddressP
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcAddressP class has associations with the following classes:
None

6.2.3.14 MsAcAuditTrail Class

Parent Class:Not Applicable

Attributes:

None

Operations:

GenerateAuditTrail
Arguments:

6-61 305-CD-029-002

Return Type:Void
Privilege:Public

MsAcAuditTrail
Arguments:
Return Type:Void
Privilege:Public

~MsAcAuditTrail
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcAuditTrail class has associations with the following classes:
Class: MsAcManager manages

6.2.3.15 MsAcCostAcctReport Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the reports generated to provide detailed and summary cost account

information.

Attributes:

None

Operations:

GenCostAcctReport - This method generates cost accounting reports based on the

resource utilization information first collected by the MsAcTrackingMgr class and

organized into cost accounts by the MsBaCostAcctB class. The type(s) of resources

reported is included in the ResourceId parameter passed to this method which include but

are not limited to I/O utilization, CPU utilization, disk utilization, archive costs, media

costs and fixed costs.

Arguments:RWCString myDAAC, RWString groupId, RWCString userId, RWCString

ResourceId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-62 305-CD-029-002

MsAcCostAcctReport - This method generates cost accounting reports based on the

resource utilization information collected by the MsAcTrackingMgr. The type(s) of

resources reported is included in the ResourceId parameter passed to this method which

include but are not limited to I/O utilization, CPU utilization, disk utilization, archive costs,

media costs and fixed costs.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Print - This method represents printing of detailed and summary account information in

the following formats: hardcopy, in response to on-line queries, to extract data files or to

disk.

Arguments:RWCString reportId, RWCString destinationID, RWCString reportFormat

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

~MsAcCostAcctReport - This method represents the constructor for this class.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:

The MsAcCostAcctReport class has associations with the following classes:
Class: MsAcTrackingDB providecostdata
Class: MsAcTrackingUI requestcostreport

6.2.3.16 MsAcDCEAcct Class

Parent Class:Not Applicable

Attributes:

group
Data Type:RWCString
Privilege:Private
Default Value:

organization
Data Type:RWCString

6-63 305-CD-029-002

Privilege:Private
Default Value:

password
Data Type:RWCString
Privilege:Private
Default Value:

principal
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

CreateAccount
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

CreatePrincipal
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

DeleteAccount
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

DeletePrincipal
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

GetAccount
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

GetPrincipal
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

6-64 305-CD-029-002

MsAcDCEAcct
Arguments:
Return Type:Void
Privilege:Public

UpdateAccount
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

UpdatePrincipal
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

~MsAcDCEAcct
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcDCEAcct class has associations with the following classes:
MsAcRegUser (Aggregation)

6.2.3.17 MsAcManager Class

Parent Class:EcPfManagedServer

Attributes:

All Attributes inherited from parent class

Operations:

GenerateAduitTrail
Arguments:
Return Type:EcTVoid
Privilege:Public

GenerateReport
Arguments:
Return Type:EcTVoid

6-65 305-CD-029-002

Privilege:Public

MsAcManager
Arguments:
Return Type:Void
Privilege:Public

SendSummaryDataToSMC
Arguments:

Return Type:EcTVoid

Privilege:Public

~MsAcManager
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcManager class has associations with the following classes:
Class: MsAcManagerUI communicatewith
Class: MsAcAuditTrail manages
Class: MsAcRegUserMgr manages
Class: MsAcReport manages
Class: MsAcUsrProfileMgr manages
Class: MsAcUsrRequestMgr manages

6.2.3.18 MsAcManagerUI Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides the user interface to allow an operator to view peinding requests for

registered accounts, create a registered user account from an entry in the pending requests

list.

Attributes:

None

Operations:

6-66 305-CD-029-002

ApproveRequest
Arguments:RWCString regUserId
Return Type:EcTVoid
Privilege:Public

DeletePendingRequest
Arguments:EcTInt guestUserId
Return Type:EcTVoid
Privilege:Public

DeleteRegUser
Arguments:RWCString regUserId
Return Type:EcTVoid
Privilege:Public

DisplayPendingRequest
Arguments:EcTInt guestUserId
Return Type:EcTVoid
Privilege:Public

DisplayPendingRequestList
Arguments:

Return Type:EcTVoid

Privilege:Public

DisplayRegUser
Arguments:EcTInt guestUserId
Return Type:EcTVoid
Privilege:Public

DisplayRegUserList
Arguments:RWCString regUserId
Return Type:EcTVoid
Privilege:Public

DsiplayProfile
Arguments:

Return Type:EcTVoid

Privilege:Public

GenerateAuditTrail
Arguments:

Return Type:EcTVoid

Privilege:Public

6-67 305-CD-029-002

GenerateReport
Arguments:

Return Type:EcTVoid

Privilege:Public

GenerateReport
Arguments:EcTInT RepordId
Return Type:EcTVoid
Privilege:Public

MsAcManagerUI
Arguments:
Return Type:Void
Privilege:Public

RetrievePendingRequstList
Arguments:

Return Type:EcTVoid

Privilege:Public

RetrieveRegUserList
Arguments:

Return Type:EcTVoid

Privilege:Public

SendSummaryDataToSMC
Arguments:

Return Type:EcTVoid

Privilege:Public

~MsAcManagerUI
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcManagerUI class has associations with the following classes:
Class: MsAcRegUserMgr
Class: MsAcManager communicatewith
Class: MsAcUsrProfileMgr uses
Class: MsAcUsrRequest uses
Class: MsAcUsrRequestMgr uses

6-68 305-CD-029-002

6.2.3.19 MsAcRegUser Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents a registered user in the system. This class is an aggregation of a

principal and a user profile. The class MsAcPrincipal represents a DCE principal, and is

accessed by means of CSS provided APIs.

Attributes:

userId
Data Type:RWCString
Privilege:Private
Default Value:

Operations:

GetDCEAcct
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

GetProfile
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

GetResUsage
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

GetUserId
Arguments:RWCString &userId
Return Type:EcTVoid
Privilege:Public

MsAcRegUser
Arguments:
Return Type:Void
Privilege:Public

6-69 305-CD-029-002

SetDCEAcct
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

SetProfile
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

SetResUsage
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

SetUserId
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

~MsAcRegUser
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcRegUser class has associations with the following classes:
Class: MsAcRegUserMgr manages

6.2.3.20 MsAcRegUserDB Class

Parent Class:Not Applicable

Attributes:

None

Operations:

AddUserProfile
Arguments:MsAcUsrProfileP&
Return Type:EcTInt
Privilege:Public

6-70 305-CD-029-002

Close
Arguments:

Return Type:EcTVoid

Privilege:Public

CreateRegUser
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

DeleteRegUser
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

DeleteUserProfile
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

GetProfileList
Arguments:RWSListCollectables&
Return Type:EcTVoid
Privilege:Public

GetRegUser
Arguments:RWCString&
Return Type:MsAcRegUserP*
Privilege:Public

GetUserProfile
Arguments:RWCString&
Return Type:MsAcUsrProfile*
Privilege:Public

Initialize
Arguments:RWCString&, RWCString&, RWCString&, RWCString&, RWCString&

Return Type:EcTVoid

Privilege:Public

Instance
Arguments:

Return Type:MsAcRegUserDB&

Privilege:Public

6-71 305-CD-029-002

MsAcRegUserDB
Arguments:RWCString&, RWCString&, RWCString&, RWCString&, RWCString&
Return Type:Void
Privilege:Public

ProfileExists
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

RegUserExists
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

ResourceDataExists
Arguments:RWCString&
Return Type:EcTInt
Privilege:Public

UpdateRegUser
Arguments:MsAcRegUserP&
Return Type:EcTInt
Privilege:Public

UpdateUserProfile
Arguments:MsAcUsrProfile&
Return Type:EcTInt
Privilege:Public

~MsAcRegUserDB
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcRegUserDB class has associations with the following classes:

MsAcRegUserMgr (Aggregation)

6.2.3.21 MsAcRegUserMgr Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

6-72 305-CD-029-002

This class represents a registered user in the system. This class is an aggregation of a
principal and a user profile. The class MsAcPrincipal represents a DCE principal, and is
accessed by means of CSS provided APIs.

Attributes:

None

Operations:

CreateRegUser
Arguments:

DeleteRegUser
Arguments:

MsAcRegUserMgr
Arguments:

Return Type:EcTVoid

Privilege:Public

NotifyUser
Arguments:

Return Type:EcTVoid

Privilege:Public

PrintUserInfor
Arguments:

Return Type:EcTVoid

Privilege:Public

RetrieveRegUser
Arguments:

RetrieveRegUserList
Arguments:

UpdateRegUser
Arguments:

~MsAcRegUserMgr
Arguments:

Return Type:EcTVoid

6-73 305-CD-029-002

Privilege:Public

Associations:

The MsAcRegUserMgr class has associations with the following classes:
Class: MsAcManagerUI
Class: MsAcManager manages
Class: MsAcRegUser manages
Class: MsAcUsrProfileMgr uses

6.2.3.22 MsAcReport Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents accountability reports that are generated by this service. These reports

are generated from the data in the management database.

Attributes:

reportId
Data Type:
Privilege:Private
Default Value:

Operations:

GenerateReport
Arguments:EcTInt reportId
Return Type:Void
Privilege:Public

MsAcReport
Arguments:
Return Type:Void
Privilege:Public

~MsAcReport
Arguments:
Return Type:Void
Privilege:Public

6-74 305-CD-029-002

Associations:

The MsAcReport class has associations with the following classes:
Class: MsAcManager manages

6.2.3.23 MsAcTrackingDB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This is the interface class to the request tracking database. This class provides operations

that maintain the data in the database. The methods provide access to retrieve, update, and

query the request tracking information.

Attributes:

None

Operations:

RetrieveOrderList - This method will retrieve a list of orders from the database according

to the specified query.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveOrderRecord - This method will retrieve the specified order record from the

request tracking database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveRequestList - This method will retrieve a list of sub-orders from the database

according to the specified query.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveRequestRecord - This method will retrieve the specified sub-order record from

the request tracking database.

6-75 305-CD-029-002

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveServiceList - This method will retrieve a list of services from the database

according to the specified query.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

RetrieveServiceRecord - This method will retrieve the specified service record from the

request tracking database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

UpdateOrderRecord - This method will update the specified order record in the database

with the specified information. This method will also be used to create a new order record

in the database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

UpdateRequestRecord - This method will update the specified sub-order record in the

database with the specified information. This method will also be used to create a new sub

order record in the database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

UpdateServiceRecord - This method will update the specified service record in the

database with the specified information. This method will also be used to create a new

service record in the database.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Associations:

The MsAcTrackingDB class has associations with the following classes:

6-76 305-CD-029-002

Class: MsAcTrackingMgr exchangesdatawith
Class: MsAcCostAcctReport providecostdata

6.2.3.24 MsAcTrackingMgr Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the manager class that collects order, request and service resource

utilization statistics and status for ECS processes. This object is the interface that the

request tracking event reporting objects (EcRequestEvent and its subclasses) as well as

other ECS applications have to the request tracking database. The database will have near

real time status information about the requests as well as the final resource utilization of

each request.

Attributes:

None

Operations:

CreateRequestItem - This method adds a sub-order type of request to request tracking.

This method is called when a new sub-order tracking object has been created. The

information received will be used to create a new entry in the request tracking database.

Arguments:requestStruct

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

CreateServiceItem - This method adds a service type of request to request tracking. This

method is called when a new service tracking object has been created. The information

received will be used to create a new entry in the request tracking database.

Arguments:serviceStruct

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

GetOrderInfo - This returns the detailed information for an order-type of request based

on the passed request ID.

Arguments:itemID

Return Type:orderStruct

Privilege:Public

PDL: No PDL

6-77 305-CD-029-002

GetOrderInfoByUR - This returns the detailed information for an order-type of request

based on the passed order UR.

Arguments:orderUR

Return Type:orderStruct

Privilege:Public

PDL: No PDL

GetOrdersBySite - This method returns a list of order-type request IDs which were run at

the specified site.

Arguments:siteId

Return Type:Void

Privilege:Public

PDL: No PDL

GetOrdersByUser - This method returns a list of order-type request IDs which were

requested by the specified user.

Arguments:userID

Return Type:itemIDList

Privilege:Public

PDL: No PDL

GetRequestInfo - This method returns the detailed information for a sub-order type of

request based on the passed request ID.

Arguments:itemID

Return Type:requestStruct

Privilege:Public

PDL: No PDL

GetRequestInfo - This method returns the detailed information for a sub-order type of

request based on the passed request ID.

Arguments:orderStruct

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

GetRequestsBySite - This method returns a list of sub-order type request IDs which were

processed by the specified site.

Arguments:siteId

Return Type:Void

Privilege:Public

PDL: No PDL

GetServiceInfo - This method returns the detailed information for a service type of request

based on the passed request ID.

6-78 305-CD-029-002

Arguments:itemID

Return Type:serviceStruct

Privilege:Public

PDL: No PDL

GetServiceInfoByUR - This method returns the detailed information for a service type of

request based on the passed request UR.

Arguments:serviceUR

Return Type:serviceStruct

Privilege:Public

PDL: No PDL

GetServicesBySite - This method returns a list of service type request IDs which were

processed by the specified site.

Arguments:siteId

Return Type:Void

Privilege:Public

PDL: No PDL

GetServicesByUser - This method returns a list of service type of request IDs which were

requested by the specified user.

Arguments:userID

Return Type:itemIDList

Privilege:Public

PDL: No PDL

GetTrackableItemByParent - This method returns a list of request IDs which are the

children requests for the specified request.

Arguments:itemID

Return Type:itemIDList

Privilege:Public

PDL: No PDL

UpdateItemStatus - This method sets the state of the specified request to the passed state.

Arguments:itemID, state

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

UpdateOrderCost - This method sets the resource utilization data of the specified order

type of request to the passed values.

Arguments:itemID, orderCost

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-79 305-CD-029-002

UpdateRequestCost - This method sets the resource utilization data of the specified sub

order type of request to the passed values.

Arguments:itemID, requestCost

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

UpdateServiceCost - This method sets the resource utilization data of the specified

service type of request to the passed values.

Arguments:itemID, serviceCost

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

Associations:

The MsAcTrackingMgr class has associations with the following classes:
Class: MsAcTrackingDB exchangesdatawith
Class: EcPriceTableB providepriceforcancelledrequests
Class: MsAcUsrProfile updateaccountbalance
Class: MsAcUsrProfileMgr updatesuserprofile
Class: MsAcTrackingUI uses

6.2.3.25 MsAcTrackingUI Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is the user interface to the request tracking server. This class receives input from

the operator and based on that input, will perform the action (with such actions as sorting

a list) or will issue requests to the MsAcTrackingMgr to request data to be displayed.

Attributes:

detailScreenCmd - This attribute contains the command entered by the operator from the

screen which displays the detail of a request.

Data Type:enum

Privilege:Private

Default Value:

menuScreenCmd - This attribute contains the command entered by the operator from the

screen which displays a list of requests.

6-80 305-CD-029-002

Data Type:enum
Privilege:Private
Default Value:

reportID

requestIdQuery - This attribute contains the unique request ID which is being asked for.

Data Type:EcTLong

Privilege:Private

Default Value:

searchString - This is a search string that can be input by the user to perform searches.

Data Type:RWCString

Privilege:Private

Default Value:

shipScreenCmd - This attribute contains the command entered by the operator from the

screen which displays the shipping information for an order type of request.

Data Type:enum

Privilege:Private

Default Value:

sortBy - This attribute is used to specify how a list displayed to the operator is to be sorted.

Data Type:enum

Privilege:Private

Default Value:

userIdQuery - This attribute stores the ECS user identification which is used to query for

Orders or root-level services which have been initiated by the user.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

DisplayItemsForSite - This method displays to the user a list of orders, sub-orders, and

services which have been or are being processed at this site.

Arguments:RWCString siteName, StateListType stateList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayOrderByUR - This method displays to the operator the detailed information of the

order specified by UR.

6-81 305-CD-029-002

Arguments:EcTUR orderUR

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayOrderInfo - This method displays to the operator the detailed information of the

order specified by the passed request ID.

Arguments:EcTLong itemId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayOrdersByUser - This method displays to the operator a list of orders, sub-orders,

and services which have been initiated by the specified user.

Arguments:RWCString userId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayOrdersForSite - This method displays to the user a list of orders which have been

or are being processed at this site.

Arguments:RWCString siteName, StateListType stateList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayRequestInfo - This method displays to the operator the detailed information of the

sub-order specified by the passed request ID.

Arguments:EcTLong itemId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayRequestsForSite - This method displays to the user a list of sub-orders which have

been or are being processed at this site.

Arguments:RWCString siteName, StateListType stateList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayRqstServByOrder - This method displays to the user a list of sub-orders and

services which are subparts of the specified order.

Arguments:EcTLong itemId

Return Type:EcTVoid

Privilege:Public

6-82 305-CD-029-002

PDL: No PDL

DisplayRqstServByRqst - This method displays to the user a list of sub-orders and

services which are subparts of the specified sub-order.

Arguments:EcTLong itemId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayRqstServByServ - This method displays to the user a list of services which are

subparts of the specified service.

Arguments:EcTLong itemId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayServiceByUR - This method displays to the operator the detailed information of

the service specified by the passed request ID.

Arguments:EcTUR serviceUR

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayServiceByUser - This method displays to the operator the detailed information of

the service specified by the passed service UR.

Arguments:RWCString userId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayServiceForSite - This method displays to the user a list of root-level services

which have been or are being processed at this site.

Arguments:RWCString siteName, StateListType stateList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

DisplayServiceInfo - This method displays to the operator the detailed information of the

service specified by the passed request ID.

Arguments:EcTLong itemId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-83 305-CD-029-002

Associations:

The MsAcTrackingUI class has associations with the following classes:
Class: MsAcCostAcctReport requestcostreport
Class: MsAcTrackingMgr uses

6.2.3.26 MsAcUserAuditTrail Class

Parent Class:MsAcAuditTrail

Attributes:

All Attributes inherited from parent class

Operations:

MsAcUserAuditTrail
Arguments:
Return Type:Void
Privilege:Public

~MsAcUserAuditTrail
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcUserAuditTrail class has associations with the following classes:
None

6.2.3.27 MsAcUsrName Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

Attributes:

firstName
Data Type:
Privilege:Private
Default Value:

6-84 305-CD-029-002

lastName
Data Type:
Privilege:Private
Default Value:

middleInit
Data Type:
Privilege:Private
Default Value:

title
Data Type:
Privilege:Private
Default Value:

Operations:

GetFirstName
Arguments:
Return Type:Void
Privilege:Public

GetLastName
Arguments:
Return Type:Void
Privilege:Public

GetMiddleInit
Arguments:
Return Type:Void
Privilege:Public

GetTitle
Arguments:
Return Type:Void
Privilege:Public

MsAcUserName
Arguments:
Return Type:Void
Privilege:Public

SetFirstName

6-85 305-CD-029-002

Arguments:RWCString
Return Type:Void
Privilege:Public

SetLastName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMiddleInit
Arguments:RWCString
Return Type:Void
Privilege:Public

SetTitle
Arguments:RWCString
Return Type:Void
Privilege:Public

~MsAcUserName
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcUsrName class has associations with the following classes:
MsAcUsrProfile (Aggregation)

6.2.3.28 MsAcUsrNameP Class

Parent Class:MsAcUsrName

Attributes:

All Attributes inherited from parent class

Operations:

MsAcUsrNameP
Arguments:MsAcUsrName&
Return Type:Void
Privilege:Public

6-86 305-CD-029-002

MsAcUsrNameP
Arguments:RWDBReader&
Return Type:Void
Privilege:Public

operator<<
Arguments:RWDBInserter&, MsAcUsrNameP&
Return Type:RWDBInserter&
Privilege:Public

update
Arguments:RWDBUpdater&, RWCString, RWCString, RWCString, RWCString
Return Type:EcTVoid
Privilege:Public

~MsAcUsrNameP
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcUsrNameP class has associations with the following classes:
None

6.2.3.29 MsAcUsrProfile Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

Attributes:

PI
Data Type:
Privilege:Private
Default Value:

accountBalance
Data Type:
Privilege:Private
Default Value:

6-87 305-CD-029-002

accountNumber
Data Type:
Privilege:Private
Default Value:

affiliation
Data Type:
Privilege:Private
Default Value:

altMailAddr
Data Type:
Privilege:Private
Default Value:

altShipAddr
Data Type:
Privilege:Private
Default Value:

billAddr
Data Type:
Privilege:Private
Default Value:

creationDate
Data Type:
Privilege:Private
Default Value:

emailAddr
Data Type:
Privilege:Private
Default Value:

expirationDate
Data Type:
Privilege:Private
Default Value:

homeDAAC
Data Type:
Privilege:Private
Default Value:

6-88 305-CD-029-002

mailAddr
Data Type:
Privilege:Private
Default Value:

mediaPref
Data Type:
Privilege:Private
Default Value:

organization
Data Type:
Privilege:Private
Default Value:

privilegeLevel
Data Type:
Privilege:Private
Default Value:

projectName
Data Type:
Privilege:Private
Default Value:

researchFiled
Data Type:
Privilege:Private
Default Value:

shipAddr
Data Type:
Privilege:Private
Default Value:

sponsor
Data Type:
Privilege:Private
Default Value:

telNum
Data Type:
Privilege:Private
Default Value:

6-89 305-CD-029-002

userId
Data Type:
Privilege:Private
Default Value:

userName
Data Type:
Privilege:Private
Default Value:

Operations:

GetAccountBalance
Arguments:
Return Type:EcTLong accountBalance
Privilege:Public

GetAccountNumber
Arguments:
Return Type:Void
Privilege:Public

GetAffiliation
Arguments:
Return Type:Void
Privilege:Public

GetAltMailAddrCity
Arguments:
Return Type:Void
Privilege:Public

GetAltMailAddrFax
Arguments:
Return Type:Void
Privilege:Public

GetAltMailAddrPhone
Arguments:
Return Type:Void
Privilege:Public

GetAltMailAddrState
Arguments:

6-90 305-CD-029-002

Return Type:Void
Privilege:Public

GetAltMailAddrStreet1
Arguments:
Return Type:Void
Privilege:Public

GetAltMailAddrStreet2
Arguments:
Return Type:Void
Privilege:Public

GetAltMailAddrZip
Arguments:
Return Type:Void
Privilege:Public

GetAltMailCountry
Arguments:
Return Type:Void
Privilege:Public

GetAltShipAddrCity
Arguments:
Return Type:Void
Privilege:Public

GetAltShipAddrFax
Arguments:
Return Type:Void
Privilege:Public

GetAltShipAddrPhone
Arguments:
Return Type:Void
Privilege:Public

GetAltShipAddrState
Arguments:
Return Type:Void
Privilege:Public

GetAltShipAddrStree2
Arguments:

6-91 305-CD-029-002

Return Type:Void
Privilege:Public

GetAltShipAddrStreet1
Arguments:
Return Type:Void
Privilege:Public

GetAltShipAddrZip
Arguments:
Return Type:Void
Privilege:Public

GetAltShipCountry
Arguments:
Return Type:Void
Privilege:Public

GetAltShipState
Arguments:
Return Type:Void
Privilege:Public

GetBillAddrCity
Arguments:
Return Type:Void
Privilege:Public

GetBillAddrCountry
Arguments:
Return Type:Void
Privilege:Public

GetBillAddrFax
Arguments:
Return Type:Void
Privilege:Public

GetBillAddrPhone
Arguments:
Return Type:Void
Privilege:Public

GetBillAddrState
Arguments:

6-92 305-CD-029-002

Return Type:Void
Privilege:Public

GetBillAddrStreet1
Arguments:
Return Type:Void
Privilege:Public

GetBillAddrStreet2
Arguments:
Return Type:Void
Privilege:Public

GetBillAddrZip
Arguments:
Return Type:Void
Privilege:Public

GetCreationDate
Arguments:
Return Type:Void
Privilege:Public

GetEmailAddress
Arguments:
Return Type:Void
Privilege:Public

GetExpirationDate
Arguments:
Return Type:Void
Privilege:Public

GetHomeDAAC
Arguments:
Return Type:Void
Privilege:Public

GetMailAddrCity
Arguments:
Return Type:Void
Privilege:Public

GetMailAddrCountry
Arguments:

6-93 305-CD-029-002

Return Type:Void
Privilege:Public

GetMailAddrFax
Arguments:
Return Type:Void
Privilege:Public

GetMailAddrPhone
Arguments:
Return Type:Void
Privilege:Public

GetMailAddrState
Arguments:
Return Type:Void
Privilege:Public

GetMailAddrStreet1
Arguments:
Return Type:Void
Privilege:Public

GetMailAddrStreet2
Arguments:
Return Type:Void
Privilege:Public

GetMailAddrZip
Arguments:
Return Type:Void
Privilege:Public

GetMailAddress
Arguments:
Return Type:Void
Privilege:Public

GetMediaPref
Arguments:
Return Type:Void
Privilege:Public

GetOrganization
Arguments:

6-94 305-CD-029-002

Return Type:Void
Privilege:Public

GetPIFirstName
Arguments:
Return Type:Void
Privilege:Public

GetPILastName
Arguments:
Return Type:Void
Privilege:Public

GetPIMiddleInit
Arguments:
Return Type:Void
Privilege:Public

GetPITitle
Arguments:
Return Type:Void
Privilege:Public

GetPrivilegeLevel
Arguments:
Return Type:Void
Privilege:Public

GetProjectName
Arguments:
Return Type:Void
Privilege:Public

GetResearchField
Arguments:
Return Type:Void
Privilege:Public

GetShipAddrCity
Arguments:
Return Type:Void
Privilege:Public

GetShipAddrCountry
Arguments:

6-95 305-CD-029-002

Return Type:Void
Privilege:Public

GetShipAddrFax
Arguments:
Return Type:Void
Privilege:Public

GetShipAddrPhone
Arguments:
Return Type:Void
Privilege:Public

GetShipAddrState
Arguments:
Return Type:Void
Privilege:Public

GetShipAddrStreet1
Arguments:
Return Type:Void
Privilege:Public

GetShipAddrStreet2
Arguments:
Return Type:Void
Privilege:Public

GetShipAddrZip
Arguments:
Return Type:Void
Privilege:Public

GetSponsor
Arguments:
Return Type:Void
Privilege:Public

GetTelNum
Arguments:
Return Type:Void
Privilege:Public

GetUserFirstName
Arguments:

6-96 305-CD-029-002

Return Type:Void
Privilege:Public

GetUserId
Arguments:
Return Type:Void
Privilege:Public

GetUserLastName
Arguments:
Return Type:Void
Privilege:Public

GetUserMiddleInit
Arguments:
Return Type:Void
Privilege:Public

GetUserTitle
Arguments:
Return Type:Void
Privilege:Public

MsUserProfile
Arguments:EcTVoid
Return Type:Void
Privilege:Public

SetAccountBalance
Arguments:EcTLong newBalance
Return Type:EcTVoid
Privilege:Public

SetAccountNumber
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAffiliation
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailAddrCity
Arguments:RWCString

6-97 305-CD-029-002

Return Type:Void
Privilege:Public

SetAltMailAddrFax
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailAddrState
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailAddrStreet1
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailAddrStreet2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailAddrZip
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltMailCountry
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddrCity
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddrFax
Arguments:RWCString

6-98 305-CD-029-002

Return Type:Void
Privilege:Public

SetAltShipAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddrState
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddrStree2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddrStreet1
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipAddrZip
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipCountry
Arguments:RWCString
Return Type:Void
Privilege:Public

SetAltShipState
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddrCountry
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddrFax
Arguments:RWCString

6-99 305-CD-029-002

Return Type:Void
Privilege:Public

SetBillAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddrState
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddrStreet1
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddrZip
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddtCity
Arguments:RWCString
Return Type:Void
Privilege:Public

SetBillAddtStreet2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetCreationDate
Arguments:const RWDate
Return Type:Void
Privilege:Public

SetEmailaddress
Arguments:RWCString
Return Type:Void
Privilege:Public

SetExpirationDate
Arguments:const RWDate

6-100 305-CD-029-002

Return Type:Void
Privilege:Public

SetHomeDAAC
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrCity
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrCountry
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrFax
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrState
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrStreet1
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrStreet2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMailAddrZip
Arguments:RWCString

6-101 305-CD-029-002

Return Type:Void
Privilege:Public

SetMailAddress
Arguments:RWCString
Return Type:Void
Privilege:Public

SetMediaPref
Arguments:RWCString
Return Type:Void
Privilege:Public

SetOrganization
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPIFirstName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPILastName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPIMiddleInit
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPITitle
Arguments:RWCString
Return Type:Void
Privilege:Public

SetPrivilegeLevel
Arguments:RWCString
Return Type:Void
Privilege:Public

SetProjectName
Arguments:RWCString

6-102 305-CD-029-002

Return Type:Void
Privilege:Public

SetResearchField
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrCity
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrCountry
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrFax
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrPhone
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrState
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrStreet1
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrStreet2
Arguments:RWCString
Return Type:Void
Privilege:Public

SetShipAddrZip
Arguments:RWCString

6-103 305-CD-029-002

Return Type:Void
Privilege:Public

SetSponsor
Arguments:RWCString
Return Type:Void
Privilege:Public

SetTelNum
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUserFirstName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUserId
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUserLastName
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUserMiddleInit
Arguments:RWCString
Return Type:Void
Privilege:Public

SetUserTitle
Arguments:RWCString
Return Type:Void
Privilege:Public

~MsUserProfile
Arguments:EcTVoid
Return Type:Void
Privilege:Public

6-104 305-CD-029-002

Associations:

The MsAcUsrProfile class has associations with the following classes:
Class: MsAcUsrProfileMgr manages
Class: MsAcTrackingMgr updateaccountbalance
MsAcRegUser (Aggregation)

6.2.3.30 MsAcUsrProfileMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents the User Profile Manager class that governs the update and

maintenance of information in the MsAcUsrProfile class. An ECS science user's available

balance will be retrieved using this class and be debited by the amount of each data product

request received by MSS.

Attributes:

None

Operations:

DeleteProfile
Arguments:

Return Type:EcTVoid

Privilege:Public

InsertProfile
Arguments:

Return Type:EcTVoid

Privilege:Public

MsAcUserProfileMgr
Arguments:
Return Type:Void
Privilege:Public

ReplicateProfileToSMC
Arguments:

Return Type:EcTVoid

Privilege:Public

6-105 305-CD-029-002

RetrieveProfile
Arguments:RWCString userId
Return Type:EcTVoid
Privilege:Public

RetrieveProfile
Arguments:RWCString lastname, firstName, middleInital

Return Type:EcTVoid

Privilege:Public

RetrieveProfile
Arguments:RWCString accountNumber

Return Type:EcTVoid

Privilege:Public

RetrieveProfileList
Arguments:

Return Type:EcTVoid

Privilege:Public

UpdateProfile
Arguments:

Return Type:EcTVoid

Privilege:Public

~MSAcUserProfileMgr
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcUsrProfileMgr class has associations with the following classes:
Class: MsAcManager manages
Class: MsAcUsrProfile manages
Class: MsAcTrackingMgr updatesuserprofile
Class: MsAcManagerUI uses
Class: MsAcRegUserMgr uses

6.2.3.31 MsAcUsrProfileP Class

Parent Class:MsAcUsrProfile

Attributes:

6-106 305-CD-029-002

All Attributes inherited from parent class

Operations:

MsAcUsrProfileP
Arguments:const RWCString&
Return Type:Void
Privilege:Public

MsAcUsrProfileP
Arguments:RWDBReader&
Return Type:Void
Privilege:Public

MsAcUsrProfileP
Arguments:MsAcUsrProfile&
Return Type:Void
Privilege:Public

operator<<
Arguments:RWDBUpdater&, MsAcUsrProfileP&

Return Type:RWDBUpdater&

Privilege:Public

operator<<
Arguments:RWDBInserter&, MsAcUsrProfileP&

Return Type:RWDBInserter&

Privilege:Public

Associations:

The MsAcUsrProfileP class has associations with the following classes:
None

6.2.3.32 MsAcUsrRequest Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

Attributes:

6-107 305-CD-029-002

PI

accountNumber

affiliation

billAddr

emailAddr

expirationDate

homeDAAC

mailAddr

mediaPref

operator

organization

processDate

projectName

requestDate

researchFiled

shipAddr

sponsor

status
Data Type:RWCString
Privilege:Private
Default Value:

telNum

userName

usrRequestId

6-108 305-CD-029-002

Operations:

GetAccountNumber
Arguments:

GetAffiliation
Arguments:

GetBillAddrCity
Arguments:

GetBillAddrCountry
Arguments:

GetBillAddrFax
Arguments:

GetBillAddrPhone
Arguments:

GetBillAddrState
Arguments:

GetBillAddrStreet1
Arguments:

GetBillAddrStreet2
Arguments:

GetBillAddrZip
Arguments:

GetEmailAddress
Arguments:

GetExpirationDate
Arguments:

GetHomeDAAC
Arguments:

GetMailAddrCity
Arguments:

6-109 305-CD-029-002

GetMailAddrCountry
Arguments:

GetMailAddrFax
Arguments:

GetMailAddrPhone
Arguments:

GetMailAddrState
Arguments:

GetMailAddrStreet1
Arguments:

GetMailAddrStreet2
Arguments:

GetMailAddrZip
Arguments:

GetMailAddress
Arguments:

GetMediaPref
Arguments:

GetOperator
Arguments:

GetOrganization
Arguments:

GetPIFirstName
Arguments:

GetPILastName
Arguments:

GetPIMiddleInit
Arguments:

GetPITitle
Arguments:

6-110 305-CD-029-002

GetProcessDate
Arguments:

GetProjectName
Arguments:

GetRequestDate
Arguments:

GetResearchField
Arguments:

GetShipAddrCity
Arguments:

GetShipAddrCountry
Arguments:

GetShipAddrFax
Arguments:

GetShipAddrPhone
Arguments:

GetShipAddrState
Arguments:

GetShipAddrStreet1
Arguments:

GetShipAddrStreet2
Arguments:

GetShipAddrZip
Arguments:

GetSponsor
Arguments:

GetStatus
Arguments:

GetTelNum
Arguments:

6-111 305-CD-029-002

GetUserFirstName
Arguments:

GetUserLastName
Arguments:

GetUserMiddleInit
Arguments:

GetUserTitle
Arguments:

GetUsrRequestId
Arguments:

MsAcUsrRequest
Arguments:

SetAccountNumber
Arguments:RWCString

SetAffiliation
Arguments:RWCString

SetBillAddrCountry
Arguments:RWCString

SetBillAddrFax
Arguments:RWCString

SetBillAddrPhone
Arguments:RWCString

SetBillAddrState
Arguments:RWCString

SetBillAddrStreet1
Arguments:RWCString

SetBillAddrZip
Arguments:RWCString

SetBillAddtCity
Arguments:RWCString

6-112 305-CD-029-002

SetBillAddtStreet2
Arguments:RWCString

SetEmailaddress
Arguments:RWCString

SetExpirationDate
Arguments:const RWDate

SetHomeDAAC
Arguments:RWCString

SetMailAddrCity
Arguments:RWCString

SetMailAddrCountry
Arguments:RWCString

SetMailAddrFax
Arguments:RWCString

SetMailAddrPhone
Arguments:RWCString

SetMailAddrState
Arguments:RWCString

SetMailAddrStreet1
Arguments:RWCString

SetMailAddrStreet2
Arguments:RWCString

SetMailAddrZip
Arguments:RWCString

SetMailAddress
Arguments:RWCString

SetMediaPref
Arguments:RWCString

SetOperator
Arguments:RWCString

6-113 305-CD-029-002

SetOrganization
Arguments:RWCString

SetPIFirstName
Arguments:RWCString

SetPILastName
Arguments:RWCString

SetPIMiddleInit
Arguments:RWCString

SetPITitle
Arguments:RWCString

SetProcessDate
Arguments:RWCString

SetProjectName
Arguments:RWCString

SetRequestDate
Arguments:RWCString

SetResearchField
Arguments:RWCString

SetShipAddrCity
Arguments:RWCString

SetShipAddrCountry
Arguments:RWCString

SetShipAddrFax
Arguments:RWCString

SetShipAddrPhone
Arguments:RWCString

SetShipAddrState
Arguments:RWCString

SetShipAddrStreet1
Arguments:RWCString

6-114 305-CD-029-002

SetShipAddrStreet2
Arguments:RWCString

SetShipAddrZip
Arguments:RWCString

SetSponsor
Arguments:RWCString

SetStatus
Arguments:RWCString

SetTelNum
Arguments:RWCString

SetUserFirstName
Arguments:RWCString

SetUserLastName
Arguments:RWCString

SetUserMiddleInit
Arguments:RWCString

SetUserTitle
Arguments:RWCString

SetUstRequestId
Arguments:RWCString

~MsAcUsrRequest
Arguments:

Associations:

The MsAcUsrRequest class has associations with the following classes:
Class: MsAcUsrRequestMgr manages
Class: MsAcManagerUI uses

6.2.3.33 MsAcUsrRequestMgr Class

Parent Class:Not Applicable

Public:No

Distributed Object:Yes

6-115 305-CD-029-002

Purpose and Description:

Attributes:

None

Operations:

CreateUserRequest
Arguments:RWCString userReqId
Return Type:EcTVoid
Privilege:Public

DeleteUserRequest
Arguments:RWCString userReqId
Return Type:EcTVoid
Privilege:Public

MsAcUserRequestMgr
Arguments:
Return Type:EcTVoid
Privilege:Public

RetrieveUserRequest
Arguments:RWCString userReqId
Return Type:EcTVoid
Privilege:Public

RetrieveUserRequestList
Arguments:
Return Type:EcTVoid
Privilege:Public

UpdateUserRequest
Arguments:RWCString userReqId
Return Type:EcTVoid
Privilege:Public

~MsAcUserRequestMgr
Arguments:
Return Type:EcTVoid
Privilege:Public

6-116 305-CD-029-002

Associations:

The MsAcUsrRequestMgr class has associations with the following classes:
Class: MsAcManager manages
Class: MsAcUsrRequest manages
Class: MsAcManagerUI uses

6.2.3.34 MsAcUsrRequestP Class

Parent Class:MsAcUsrRequest

Attributes:

All Attributes inherited from parent class

Operations:

MsAcUsrRequestP
Arguments:
Return Type:Void
Privilege:Public

~MsAcUsrRequestP
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcUsrRequestP class has associations with the following classes:
None

6.2.3.35 MsAcUsrResUsage Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

Attributes:

cpuLimit
Data Type:EcTInt
Privilege:Private

6-117 305-CD-029-002

Default Value:

cpuUsage
Data Type:EcTInt
Privilege:Private
Default Value:

dataLimit
Data Type:EcTInt
Privilege:Private
Default Value:

dataUsage
Data Type:EcTInt
Privilege:Private
Default Value:

diskLimit
Data Type:EcTInt
Privilege:Private
Default Value:

diskUsage
Data Type:EcTInt
Privilege:Private
Default Value:

memoryLimit
Data Type:EcTInt
Privilege:Private
Default Value:

memoryUsage
Data Type:EcTInt
Privilege:Private
Default Value:

networkLimit
Data Type:EcTInt
Privilege:Private
Default Value:

networkUsage
Data Type:EcTInt
Privilege:Private

6-118 305-CD-029-002

Default Value:

orderLimit
Data Type:EcTInt
Privilege:Private
Default Value:

orderUsage
Data Type:EcTInt
Privilege:Private
Default Value:

Operations:

GetCpuLimit
Arguments:cpuLimit
Return Type:EcTVoid
Privilege:Public

GetCpuUsage
Arguments:cpuUsage
Return Type:EcTVoid
Privilege:Public

GetDataLimit
Arguments:dataLimit
Return Type:EcTVoid
Privilege:Public

GetDataUsage
Arguments:dataUsage
Return Type:EcTVoid
Privilege:Public

GetDiskLimit
Arguments:diskLimit
Return Type:EcTVoid
Privilege:Public

GetDiskUsage
Arguments:diskUsage
Return Type:EcTVoid
Privilege:Public

6-119 305-CD-029-002

GetMemoryLimit
Arguments:memoryLimit
Return Type:EcTVoid
Privilege:Public

GetMemoryUsage
Arguments:memoryUsage
Return Type:EcTVoid
Privilege:Public

GetNetworkUsage
Arguments:networkUsage
Return Type:EcTVoid
Privilege:Public

GetNetwrokLimit
Arguments:networkLimit
Return Type:EcTVoid
Privilege:Public

GetOrderLimit
Arguments:orderLimit
Return Type:EcTVoid
Privilege:Public

GetOrderUsage
Arguments:orderUsage
Return Type:EcTVoid
Privilege:Public

MsAcUsrResUsage
Arguments:
Return Type:Void
Privilege:Public

SetCpuLimit
Arguments:cpuLimit
Return Type:EcTInt
Privilege:Public

SetCpuUsage
Arguments:cpuUsage
Return Type:EcTInt
Privilege:Public

6-120 305-CD-029-002

SetDataLimit
Arguments:dataLimit
Return Type:EcTInt
Privilege:Public

SetDataUsage
Arguments:dataUsage
Return Type:EcTInt
Privilege:Public

SetDiskLimit
Arguments:diskLimit
Return Type:EcTInt
Privilege:Public

SetDiskUsage
Arguments:diskUsage
Return Type:EcTInt
Privilege:Public

SetMemoryLimit
Arguments:memoryLimit
Return Type:EcTInt
Privilege:Public

SetMemoryUsage
Arguments:memoryUsage
Return Type:EcTInt
Privilege:Public

SetNetworkLimit
Arguments:networkLimit
Return Type:EcTInt
Privilege:Public

SetNetwrokUsage
Arguments:networkUsage
Return Type:EcTInt
Privilege:Public

SetOrderLimit
Arguments:orderLimit
Return Type:EcTInt
Privilege:Public

6-121 305-CD-029-002

SetOrderUsage
Arguments:orderUsage
Return Type:EcTInt
Privilege:Public

~MsAcUsrResUsage
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcUsrResUsage class has associations with the following classes:
MsAcRegUser (Aggregation)

6.2.3.36 MsAcUsrResUsageP Class

Parent Class:MsAcUsrResUsage

Attributes:

All Attributes inherited from parent class

Operations:

MsAcUsrResUsageP
Arguments:RWDBReader&
Return Type:Void
Privilege:Public

MsAcUsrResUsageP
Arguments:const MsAcUsrResUsage&
Return Type:Void
Privilege:Public

MsAcUsrResUsageP
Arguments:const RWCString&
Return Type:Void
Privilege:Public

operator<<
Arguments:RWDBInserter&, MsAcUsrResUsageP&
Return Type:RWDBInserter&
Privilege:Public

6-122 305-CD-029-002

operator<<
Arguments:RWDBUpdater&, MsAcUsrResUsageP&

Return Type:RWDBUpdater&

Privilege:Public

~MsAcUsrResUsageP
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsAcUsrResUsageP class has associations with the following classes:
None

6.2.4 Accountability Management Dynamic Model

6.2.4.1 Retrieving a User's Email Address

This scenario traces the events associated with an ECS Application retrieving a User Profile. It is
depicted in Figure 6.2-8.

MsAcUsrProfileMgr MsAcUsrProfileMgr
ECSApplication MsAcUserProfile (client side) (server side) MsAcRegUserMgr MsAcRegUserDB

ctor

RetrieveProfile(userID)

GetEmailAddr()

dtor

RetrieveProfile(userID)

ctor

send profile
information

dtor

populate MsAcUserProfile
w/profile information

RetrieveRegUser()

GetUserProfile()

Figure 6.2-8. Retrieving a User's Email Address

6.2.4.1.1 Beginning Assumptions

None.

6.2.4.1.2 Interfaces with Other Subsystems and Segments

An ECS application that needs to retrieve a User Profile for the Email Address

6-123 305-CD-029-002

6.2.4.1.3 Stimulus

An ECS application initiates a call to retrieve the User Profile for a registered user.

6.2.4.1.4 Participating Classes From the Object Model

MsAcUserProfile,

MsAcUsrProfileMgr,

MsAcRegUserMgr,

MsAcRegUserDB

6.2.4.1.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal, steady state.

6.2.4.1.6 Ending State

The calling ECS application retrieves the Email address, and the system, segment and subsystem
are in a normal steady state.

6.2.4.1.7 Scenario Description

An ECS application creates an instance of MsAcUserProfile (a public class exported by the
Accountability Application Service) and creates an instance of MsAcUsrProfileMgr (a public,
distributed class). The ECS application then asks MsAcUsrProfileMgr to populate the
MsAcUserProfile object with the RetrieveProfile method.

The MsAcUsrProfileMgr in the ECS application requests the profile information from the
MsAcUsrProfileMgr which is residing in the Accountability Management server. The profile
information is retrieved through the registered user manager object (MsAcRegUserMgr) who gets
the information from the registered user database interface object (MsAcRegUserDB).

The information is passed back to the MsAcUsrProfileMgr object who populates the
MsAcUserProfile object with the information. The ECS application is then returned control from
its method call and the application calls the GetEmailAddr method to get the e-mail address. After
the ECS application has gotten all the information it needs from the user profile, the
MsAcUserProfile and MsAcUsrProfileMgr objects are deleted.

6.2.4.1 Request Tracking Overview

This scenario shows how the ECS application will use the Request Tracking key mechanism to
report request state changes in near real-time and collect and report resource utilization for a
Request. This scenario describes how a Product Order type of request would be processed. Ingest
Request, User Request, and Operator Request types would be processed in a similar fashion, except
the classes EcService and EcServiceEvent would be used. The scenario is depicted in
Figure 6.2-9.

The following scenarios show the details of the overview scenario:

1. Creation of an order - Figure 6.2.10.

2. Collection of resource utilization for an order - Figure 6.2.11.

6-124 305-CD-029-002

3.	 Updating the state of an order. This state reporting occurs in near real-time so that the
operator can view the current state of the requests in the system. - Figure 6.2.12.

4. Spawning a sub-order from an order - Figure 6.2.13.

5. Collection of resource utilization for a sub-order - Figure 6.2.14.

6. Cancellation of a sub-order - Figure 6.2.15.

7. Completion of processing on the order - Figure 6.2.16.

6.2.4.1.1 Beginning Assumptions

None.

6.2.4.1.2 Interfaces with Other Subsystems and Segments

ECS Application1 and ECS Application2 - these could be any ECS applications which process any
part of an ECS Request Type.

Request Tracking Server - this is the part of the Accountability Management CI (in the
Management Subsystem) which receives and stores the Request Tracking information in the
management database and displays the information to User Services personnel as requested.

6.2.4.1.3 Stimulus

An ECS User submits a request for an ECS product.

6.2.4.1.4 Participating Classes From the Object Model

EcOrder

EcSubOrder

The classes of the Request Tracking Server

6.2.4.1.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal, steady state.

6.2.4.1.6 Ending State

The system, segment and the subsystem are in a normal, steady state.

6.2.4.1.7 Scenario Description

1. ECS Application1 receives a Product Order type of request.

2.	 ECS Application1 constructs an EcOrder object. This object will stay around as long as
this application is processing the associated product order.

3.	 EcOrder sends the information about the order (received when the object was created) to
the Request Tracking Server to be stored in the management database which can then be
displayed to the operator, providing a near real-time list of requests in the system.

4.	 As the order changes state during its processing, that state change is reported to EcOrder.
EcOrder immediately sends the state change information to the Request Tracking Server at
the MSS server. This allows the operator to see the current state of the request in near real
time.

6-125 305-CD-029-002

ECS ECS
Application1 Application2 EcOrder EcSubOrder

Request Tracking
Server

6-126
305-C

D
-029-002

Receive a product
order

ctor

Order information

Process the
order

Report Resource Utilization
and Order State Changes

Spawn A Sub Order For
App2 to Process

ctor

Order State Changes

Start Collecting Resource Utilization

Continue to
Process Order

Process the
sub-order

Report Resource Utilization
and Sub-Order State Changes

Start Collecting Resource Utilization

Report Resource Utilization
and Order State Changes

Order State Changes
Complete Processing on Order

dtor

Final Order State and Total Order Resource UtilizationComplete Processing on Sub-Order

dtor

Final Sub-Order State and
Total Sub-Order Resource Utilization

Sub-Order information

Sub-Order State Changes

Figure 6.2-9. Request Tracking Overview

ECS MSS
Application EcOrder EcOrderEvent EcPfManagedServer EcAgManager SubAgent MsAcTrackingMgr MsAcUserProfile MsAcUsrProfileMgr MsAcTrackingDB

ctor

CreateOrderItem()

PfProcessEvent()

ctor

ProcessEvent()

ProcessOrderEvent()

dtor

Standard

ctor

RetrieveProfile()

GetAvailable
Balance()

SetAvailable
Balance()

UpdateProfile()

Logging
Event

availableBalance -= estimatedPrice of order

CreateOrderRecord()

6-127
305-C

D
-029-002

Figure 6.2-10. Request Tracking-Creating An Order

ECS
Application EcOrder

StartCollecting()

perform processing on the
order inside this method

StopCollecting()

GetDiskUtilization()

add disk utilization collected
by the ECS App to retrieved amount

SetDiskUtilization()

start of a method which is
processing a product order

end of the method

initialize resource counters
to values read from the system

read resource status from
the system and subtract the
initialized resource counters.

Add this to the order's resource
utilization.

Figure 6.2-11. Request Tracking-Collecting Resource Utilization For An Order

6-128 305-CD-029-002

ECS MSS
Application EcOrder EcPfManagedServer EcAgManager EcOrderEvent SubAgent MsAcTrackingMgr MsAcTrackingDB

SetState()

PfProcessEvent()

ProcessEvent()

ProcessOrderEvent

ctor

Standard
Event

Logging

UpdateItemStatus()

6-129
305-C

D
-029-002

dtor

RetrieveOrderRec()

UpdateOrderRec

Figure 6.2-12. Request Tracking-Update The State of An Order

ECS MSS
Application EcSubOrder EcPfManagedServer EcAgManager SubAgent MsAcTrackingMgr MsAcTrackingDB

PfProcessEvent()

CreateRequestItem(...parentId...)

RetrieveOrderRec(...parentId...)

populate request record
with info from order

record

ctor (...orderId...)

ProcessEvent()

Standard
Event

Logging

6-130
305-C

D
-029-002

CreateRequestRecord()

Figure 6.2-13. Request Tracking-Spawning A Sub-Order From An Order

ECS
Application EcSubOrder

StartCollecting()

perform processing on sub-order
while inside this method

StopCollecting()

GetDiskUtilization()

add disk utilization collected
by the ECS App to retrieved amount

SetDiskUtilization()

GetMediaCount()

add or subtract from
retrieved media count

SetMediaCount()

start of a method which is
processing a sub-part of a

product order

end of the method

initialize resource counters
to values read from the system

read resource status from the system
and subtract the initialized resource
counters.

resource utilization.
Add this to the order's

Figure 6.2-14. Request Tracking-Collecting Resource Utilization For A Sub-Order

6-131 305-CD-029-002

ECS MSS
Application EcSubOrder EcPfManagedServer EcAgManager EcOrderEvent SubAgent MsAcTrackingMgr MsAcUserProfile MsAcUsrProfileMgr MsAcTrackingDB EcPriceTable

SetState(cancel)

ProcessEvent()

ctor

GetAvailable
Balance()

SetAvailable
Balance()

UpdateProfile()

availableBalance -= estimatedPrice of order +
price of cancelled items

RetrieveRequestRecord()

UpdateRequestRec()

RetrieveProfile()

ProvidePrices(cancelled resources,
cancelled granuals)

ProcessSubOrderEvent()

ctor
PfProcessEvent()

Standard
Event

Logging

UpdateItemStatus(cancel)
dtor

6-132
305-C

D
-029-002

Figure 6.2-15. Request Tracking-Canceling A Sub-Order

ECS MSS
Application EcOrder EcPfManagedServer EcAgManager EcOrderEvent SubAgent MsAcTrackingMgr MsAcTrackingDB

dtor

ProcessOrderEvent()

PfProcessEvent()

ProcessEvent()

Standard
Event

Logging

UpdateOrderState()

UpdateOrderCost()

ctor

6-133
305-C

D
-029-002

dtor

RetrieveOrderRec()

UpdateOrderRec()

Figure 6.2-16. Request Tracking-Finished Processing Of An Order

4.	 Inside each method which ECS Application1 executes to process the order, a call is made
to the start utilization collection method in EcOrder. At the end of the method, a call is
made to EcOrder to stop collecting utilization data. This will enable EcOrder to
automatically collect process-related utilization data associated with the request. This
process is represented by the Start Collecting Resource Utilization event.

5. ECS Application1 performs appropriate processing on the Product Order.

6.	 During the processing, as ECS Application1 uses resources outside of process-related
utilization, ECS Application1 reports the resources used to the EcOrder object. In addition,
if the state of the Product Order request changes, those state changes are reported to
EcOrder. EcOrder reports the state change to the Request Tracking Server at the MSS
server to provide near real-time request status to the operator. The resource utilization
(cost) is stored with the EcOrder object until the request has completed processing. This
process is represented by the Report Resource Utilization and Order State Changes event.

7.	 State changes are reported to the Request Tracking Server at the MSS server by EcOrder,
but resource utilization is collected and only reported at the end of the life of the order.

8.	 During the processing of the Product Order, ECS Application finds that it must spawn a
sub-part of this Product Order and have another application (ECS Application2) process the
sub-part.

9.	 When the sub-request of the Product Order is received by ECS Application2, the
application creates a EcSubOrder object. As part of this creation, the ID of EcOrder is
passed - which will enable the Request Tracking Server to relate the sub-order with its
associated order.

10. EcSubOrder sends the information about the sub-request back to the Request Tracking
Server at the MSS server

11. ECS Application1 and ECS Application2 then continue processing each of their parts of
the Product Order independently. The state changes and cost information are reported and
collected for each part independently as described above. The state changes are
immediately sent to the Request Tracking Server at the MSS server to provide near real
time state tracking of requests and the resource utilization (cost) is stored with the
EcSubOrder object until the request has completed processing.

12. When an application is finished processing their part of the Product Order, the application
destroys the EcOrder or EcSubOrder. This causes the final state of the request as well as
the total resource utilization of the request part to be reported back to the Request Tracking
Server at the MSS server.

6.2.5 Accountability Management Structure

Table 6.2-1 lists the components of the Accountability Management Service.

6-134 305-CD-029-002

Table 6.2-1. Accountability Management Components
Component Name COTS/Custom

Accountability Manager Custom

User Account User Interface Custom

User Account User Interface Custom

Account Creation Management Custom

User Profile Access Custom

Request Tracking Management Custom

Request Tracking Collection Custom

6.2.5.1 Accountability Manager CSC

Purpose and Description

The Accountability Manager CSC manages the operation of the service and provides the audit trail
reporting functionality. This class inherits from EcPfManagedServer to provide the management
framework for the service.

6.2.5.2 User Account User Interface

Purpose and Description

This CSC provides the graphical user interface for the operator to perform user account
management.

6.2.5.3 User Account Management CSC

Purpose and Description

This CSC performs the account management functions on the registered user accounts based on
inputs from the User Account User Interface. This includes account creation, deletion, and
modification.

6.2.5.4 Account Creation Management CSC

Purpose and Description

This CSC receives user registration requests and keeps the requests as pending user accounts in a
database until the User Account User Interface approves the pending account or deletes the
pending account.

6.2.5.5 User Profile Access CSC

Purpose and Description

This CSC provides the server side functionality of the public class exported by Accountability
Management Service. This class responds to requests from the client (imported into ECS
applications) and provides the user profile requested in response to the call.

6-135 305-CD-029-002

6.2.5.6 Request Tracking Management CSC

Purpose and Description

This CSC manages the request tracking information. The class receives request tracking
information from the Request Tracking Collection CSC and updates the request tracking
information in the database. This CSC also includes a user interface to the tracking database which
enables the operator to see the state of requests executing or completed executing in the ECS
system in near real-time and allows the operator to generate and output cost accounting type reports
from the resource utilization data which is collected for each request.

6.2.5.6 Request Tracking Collection CSC

Purpose and Description

This CSC provides the Request Tracking Key Mechanism for ECS Applications to report request
status changes back to a central database to be displayed to an operator in near real-time. This
CSC contains the classes which the applications use to collect resource utilization. The classes are
designed to support a hierarchy of requests and to allow each request in the hierarchy to be tracked
independently. The Request Tracking Management CSC at the MSS server receives the state
changes and the resource utilization for the requests to provide near real-time state tracking and off
line resource cost reporting.

6.2.6 Accountability Management and Operation

6.2.6.1 System Management Strategy

The Accountability Management Service utilizes the public class exported by the process
framework, represented by EcPfManagedServer. These classes facilitate the management of the
service.

6.2.6.2 Operator Interfaces

The Accountability Management Service provides two graphical user interfaces. One user
interface provides the operator the capability to view and delete pending user requests; to create
registered user accounts from (approved) pending requests; and to modify and delete registered
user accounts. The other user interface provides the operator the capability to view the current
status of the requests (limited to those types mentioned in the overview) that are being or have been
processed by the ECS system.

6.2.6.3 Reports

The Accountability Management Service provides the following predefined reports:

User Characterization report -- provides a summary of the types and number of ECS users

System Access Profile report -- provides a summary of the types and number of ECS accesses

Utilization of User Services Personnel Accountability report -- provides a summary of the types
and number of user services contacts with ECS users

Using the Report Generation CSC associated with the Management Database, M&O staff will be
able to generate a diverse range of reports such as user audit, data audit, and request tracking.

6-136 305-CD-029-002

6.3 Billing and Accounting

6.3.1 Billing and Accounting Overview

ECS operations are supported by integrated and automated billing and accounting functions. The
Enterprise Monitoring and Coordination (EMC) Billing and Accounting Application Service
(BAAS) provides the mechanisms for ECS to price user data orders, invoice users for data and
media, and meet ECS' needs to track and to provide financial data.

One of the BAAS' primary functions is to provide bill-back capabilities. The billing and invoicing
functionality allows ECS to gather and track information on science user data orders, and to cost
these orders based on different resources (e.g., disk utilization, CPU, media, connect time) or
standard product ordered using pricing algorithms associated with each one. Policy will determine
what prices are applied. A standard pricing policy for ECS products across sites is assumed.

The Data Processing Subsystem (DPS) and Data Server Subsystem (DSS) will provide the BAAS
with accounting and resource data for science user orders which have been fulfilled so that the data
may be priced. For purposes of estimating the price of a new product request, pricing algorithms
maintained in pricing tables in BAAS will be made available to the DSS.

The billing and invoicing functionality allows ECS to inform accounts of their activity during a
particular billing cycle and of the charges associated with such activity.

Policy may dictate that no charges be applied to any account, or to particular accounts; or that
certain accounts be measured on resources consumed (e.g., number of tapes, number of images)
rather than dollars. In such cases, the accounts would not receive a bill invoice but a statement of
account does not anticipate payment. An account also would receive a statement of account instead
of a bill invoice when the account has funds credited to it in advance of purchases of data. As
charges are incurred by the account, these are deducted (debited) from the existing credits. The
statements of account would show activity and balance remaining. An account's balance status
also will be available for on-line consulting via the Client Subsystem (CLS).

Science user payments (made in the form of checks or purchase orders) will be credited to the
appropriate accounts and forwarded to a designated NASA Financial Management Office (FMO)
for processing and deposit. To track all financial data information gathered on science users there
will be accounts set up and maintained by the BAAS. Science User's product orders and collected
payments will be tracked by the BAAS COTS Accounts Receivables module. A current contract
to purchase consumables resides with EDS, which precludes the need for the BAAS to report on
payables until this contract ends.

The BAAS COTS will provide the following major functions: Billing and Invoicing, Accounts
Receivable, Accounts Payable (dormant until the third party contract to purchase consumables
ends), and General Ledger Reporting. A custom piece will be developed to provide cost
accounting information gathered by the Accountability portion of MSS. The COTS will be capable
of supporting the information tracking of 17,000 user accounts that are current accounts and are
accessible on-line (not archived or historical). The Billing and Accounting Application package
supports a minimum of 500 uniquely priced items or products. As part of the BAAS, it will provide
an interface to other ECS Subsystems and Services to provide access to information such as pricing
estimates and account balance data maintained within the Billing and Accounting Application
package. The price estimate and account balance data supplied by the BAAS as part of a response

6-137 305-CD-029-002

to a query (from DSS or CLS) will reflect the same pricing and invoicing options as would be
presented to a client M&O user directly accessing the BAAS COTS Package. The interface to the
COTS package can be accessed either through a Microsoft Windows client or a Unix server
interface. Only registered users of the BAAS COTS will be able to access sensitive billing
information. Access will be strictly controlled by the COTS, with only certain M&O user services
personnel able to access those functions that have been explicitly granted to them. In addition, the
COTS package is also capable of interfacing with the ECS Sybase Management Database directly.

6.3.2 Billing and Accounting Context

The Billing and Accounting Application Service (BAAS), as shown in the context diagram on
figure 6.3-1, depends on other subsystems for the information it needs to price data orders, invoice
the correct accounts, and to track financial data. Accounts are set up in the BAAS using User
Profile Information received from the Accountability Management Service. Resource, data
product, and accounting information are received from other subsystems, such as DSS, to which
the BAAS provides information contained on pricing tables to be used in price estimation. The
BAAS will be able to accept accounting data that may originate from DAAC unique accounting
requirements. At the end of a billing cycle, statements are generated to be sent to the science user
accounts. If payments are due from the science users, these payments are received at the SMC for
posting to the appropriate account. Science user payments could be purchase orders as well. All
science user payments are forwarded to the SMC to be recorded into the BAAS COTS and to be
deposited in Federal Treasury accounts in accordance with GAO and OMB regulations and
guidelines. In the case of overpayments, or if an account requests the return of funds already
credited to it, refunds will be requested from the BAAS COTS. The CLS will be able to request
and access account status information. Payment for consumable items provided by vendors will
be issued by the agent authorized by the EDS contract which is out of scope of the BAAS, and so
is not shown in the accompanying context diagram.

6.3.3 Billing and Accounting Object Model

The Object Model for the Billing and Accounting Application Service is shown on Figure 6.3-2.

6.3.3.1 EcAgCOTSManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

this abstract class embodies the characteristics and functionality of a manager object

responsible for managing a single COTS process. It encapsulates all MSS management

application functions into a single class. The COTS proxy agent developer is responsible

for inheriting from this class and specializing it towards the COTS process to manage.

Attributes:

None

6-138 305-CD-029-002

BAAS

DSS

Science
User

Accountability
Mgmt

Service

CLS

NASA
Financial

Institutions

DPSM&O
Staff

DAAC
Unique
Acct'ng

Systems

This System

bill invoices

current account
balance status

request for account
balance status

deposits,
Process Refunds

standard
Price

Tables

accounting data:
resource utilization

User Profile Data

accounting data:
resource utilization

initiate
Accounting
Activities

accounting data:
resource utilization

refunds, credit adjustments

Science User Payments,
Request for Refunds

Figure 6.3-1. Billing and Accounting Context Diagram

Operations:

None

Associations:

The EcAgCOTSManager class has associations with the following classes:
None

6.3.3.2 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port

monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class

also starts a thread that triggers scheduled events (i.e. polling ECS application's

performance metrics).

6-139 305-CD-029-002

MsBaBAASB - COTS

MsBaBAASManagerB

EcAgCOTSManager

MsBaPriceTableB

EcPriceTableB

MsAcTrackingMgr

MsAcUsrProfileMgr

MsBaManagerUIB

EcPfManagedServer

COTS

BAASActivityId

MsBaManagerUIB()
~MsBaManagerUIB()
initiateBAASactivity(RWCString BAASActivityId)

MsBaPriceTableB()()
~MsBaPriceTableB()()
UpdateStdPrices(RWCString PriceElemId, RWCString PriceElemIdDescrip, RWCString
updateAction, EcCurrency PriceElemValue)
GeneratePriceElemId(RWCString PriceElemId, RWCString homeDAAC, RWCString
PriceElemIdDescrip, EcCurrency PriceElemValue)

accessLevel
MOStaffId

~MaBaBAASManagerB()
MsBaBAASManagerB(RWCString BAASActivityList)
PrepareReports(RWCString reportId)
MonitorAccounts(RWCString accountId)
UpdateAccounts(RWCString accountIdList, RWCString batchId)
ProcessPmt(RWCString accountId, EcCurrency pmtAmt)
MaintainPricingTables(RWCString PriceTableId, RWCString MOStaffId)

myExprsShipPrice
myStdrdShipPrice
my8mmTapePrice
my4mmTapePrice
myCDPrice
myServicePrice
myProductdPrice

EcPriceTableB()()
~EcPriceTableB()()
ProvidePrices(RWCString userID; RWCString requestID, GlParameterList)

Offpage

Offpage

[DISTR OBJ]

[Public][External]

Offpage

[DISTR OBJ]Offpage

[Public]

Offpage

- : RWCString

+
+
+ : EcTint

+ : EcTVold

- : EcTint = 0
- : RWCString = None

+
+
+ : EcTVoid
+ : EcTVoid
+
+
+

- : EcCurrency
- : EcCurrency
- : EcCurrency
- : EcCurrency
- : EcCurrency
- : EcCurrency
- : EcCurrency

+

accessedBy

retrieveOrderInformation

update available balance

initiateM&OActivities

maintainTableEntries

6-140
305-C

D
-029-002

[External] [Public]

Figure 6.3-2. Billing and Accounting Object Model

Attributes:

None

Operations:

None

Associations:

The EcPfManagedServer class has associations with the following classes:
None

6.3.3.3 EcPriceTableB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents a public and distributed class that holds the prices of every billable

item in the ECS inventory of products and services. Price of hard media and standard

shipping costs are also maintained in this table.

Attributes:

my4mmTapePrice - This attribute represents the price charged for an 4mm tape that is part

of an order for an ECS data product request.

Data Type:EcCurrency

Privilege:Private

Default Value:

my8mmTapePrice - This attribute represents the price charged for an 8mm tape that is part

of an order for an ECS data product request.

Data Type:EcCurrency

Privilege:Private

Default Value:

myCDPrice - This attribute represents the price charged for one Compact Disc (CD) that

will be used to store data that is part of an order for an ECS data product request.

Data Type:EcCurrency

Privilege:Private

Default Value:

myExprsShipPrice - This attribute represents the price charged for shipping an ECS data

6-141 305-CD-029-002

product request by the express mail method contained in the user's profile information.

Data Type:EcCurrency

Privilege:Private

Default Value:

myProductdPrice - This attribute represents the price charged for a chargeable and

identifiable ECS data product. The format and content of existing DAACs pricing lists of

products, media and services will be incorporated into the structure of the EcPriceTableB

as much as possible. Identifying products by a granule Id, size of granule and other price

related factors will also be considered by the ECS system with the actual price guidelines

for such attributes determined by an EOSDIS Pricing Policy committee.

Data Type:EcCurrency

Privilege:Private

Default Value:

myServicePrice - This attribute represents the price charged for a service (such as dataset

subsetting) that is required in the process of fufilling an order for an ECS data product

request.

Data Type:EcCurrency

Privilege:Private

Default Value:

myStdrdShipPrice - This attribute represents the price charged for shipping an ECS data

product request by the normal mail method contained in the user's profile information.

Data Type:EcCurrency

Privilege:Private

Default Value:

Operations:

EcPriceTableB
Arguments:

ProvidePrices - This method represents the summation of all the parameters in a user's

request for a data product request including shipping charges. The global parameter list,

GlParameterList passed in will contain the price element IDs corresponding to the type of

product, type of service(s) required to satisfy the request, the type and number of media,

and shipping method. This method will reference standard price entries for each of these

parameters and arrive at a total price for the given request.

Arguments:RWCString userID; RWCString requestID, GlParameterList

Return Type:Void

Privilege:Public

~EcPriceTableB

6-142 305-CD-029-002

Arguments:

Associations:

The EcPriceTableB class has associations with the following classes:

None

6.3.3.4 MsAcTrackingMgr Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the manager class that collects order, request and service resource

utilization statistics and status for ECS processes. This object is the interface that the

request tracking event reporting objects (EcRequestEvent and its subclasses) as well as

other ECS applications have to the request tracking database. The database will have near

real time status information about the requests as well as the final resource utilization of

each request.

Attributes:

None

Operations:

None

Associations:

The MsAcTrackingMgr class has associations with the following classes:
Class: MsBaBAASManagerB retrieveOrderInformation

6.3.3.5 MsAcUsrProfileMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents the User Profile Manager class that governs the update and

maintenance of information in the MsAcUsrProfile class. An ECS science user's available

balance will be retrieved using this class and be debited by the amount of each data product

request received by MSS.

Attributes:

6-143 305-CD-029-002

None

Operations:

None

Associations:

The MsAcUsrProfileMgr class has associations with the following classes:
Class: MsBaBAASManagerB updateavailablebalance

6.3.3.6 MsBaBAASB-COTS Class

Parent Class:EcAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

This class represents the COTS that provides bill-back capablities for data purchased from

ECS by science users. The Billing and Accounting Application Service (BAAS) COTS will

provide the following major functions: Billing and Invoicing, Accounting: Accounts

Receivable, Acccounts Payable (deferred), General Ledger, Reporting, which will be

consistent with generally accepted accounting principles and standards for the Federal

Government where appropriate including General Accounting Office (GAO) standards

Title 2 (Accounting), Title 3 (Audit), OMB Circular A-127 on Financial Management

Systems and the Federal Financial Management System Requirements issued by the Joint

Financial Management Improvement Program (JFMIP).

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsBaBAASB-COTS class has associations with the following classes:
Class: MsBaBAASManagerB accessedBy

6.3.3.7 MsBaBAASManagerB Class

Parent Class:EcPfManagedServer
Public:No

6-144 305-CD-029-002

Distributed Object:No

Purpose and Description:

This class manages all processes for the Billing and Accounting Application Service

(BAAS) that includes controlling the COTS, updating the Standard Price table, initiate and

the retrieval of accounting data from the ECS Management Database via the

MsAcTrackingMgr class and the adjusting of user profile balances via the

MsAcUsrProfileMgr class. In addition, the initiation and generation of reports by the

COTS is controlled by this class.

Attributes:

MOStaffId - This attribute represents a unique Id associated with a member of the

Maintenance and Operations (M&O) staff. Combined with accessLevel attribute, these

attributes will provide the proper authorization levels to both the BAAS COTS package and

the BAAS Cost Accounting function contained in the MsBaCostAcctB class.

Data Type:RWCString

Privilege:Private

Default Value:None

accessLevel - This attribute represents the current access level the user of this class has,

which will determine which of the management activities will be permitted by the user

associated with an MOStaffID.

Data Type:EcTint

Privilege:Private

Default Value:0

Operations:

MaintainPricingTables - This method represents the update and maintenance functions

associated with an instance of the EcPriceTableB, that will be invoked as

MsBaPriceTableB. Two methods contained in the MsBaPriceTableB will allow M&O

staff members to add, change or delete entries in the ECS-wide price tables as new product

and service charges are determined. This method manages that process.

Arguments:RWCString PriceTableId, RWCString MOStaffId

Return Type:Void

Privilege:Public

MonitorAccounts - This method represents the monitoring of accounts in the BAAS

COTS. Monitoring includes but is not limited to verifying account balances, requesting the

aging of accounts information through the COTS package, and other information that does

not result in changing of information either in the COTS accounting database or the ECS

Management Database.

Arguments:RWCString accountId

Return Type:EcTVoid

6-145 305-CD-029-002

Privilege:Public

MsBaBAASManagerB - This method represents the constructor for this class.

Arguments:RWCString BAASActivityList

Return Type:Void

Privilege:Public

PrepareReports - This method represents the initiation, generation, retrieval or

transmission of reports that are created by the BAAS COTS.

Arguments:RWCString reportId

Return Type:EcTVoid

Privilege:Public

ProcessPmt - This method represents the initiation of the depositing of funds collected

from ECS Science Users for payment on their accounts. Monies collected will be tracked

by the COTS package and will be forwarded to the designated NASA Financial

Management Office (FMO) which will then deposit these payments into the appropriate

U.S. Treasury accounts. The Credit Management component of the COTS Accounts

Receivables module will have the capability to set up credit accounts which can be

configured to not only grant credit approval and determine credit worthiness for ECS

registered users, but perform credit approval automatically based on the amount of credit

available in a Science User's account and the outstanding balance applied to a given order.

This method will also be considered to be "overloaded" and be able to initiate refund

requests from the FMO as well as track payments received. The COTS will have the

capability to handle a variety of electronic funds transfer formats and electronic data

interchanges (EDI) to ensure monies collected are deposited and transferred between

government accounts in a timely fashion, if the FMO wishes to use these COTS

capabilities.

Arguments:RWCString accountId, EcCurrency pmtAmt

Return Type:Void

Privilege:Public

UpdateAccounts - This method represents the updating of accounts in the BAAS COTS.

Updating includes but is not limited to processing batches of shipped data product requests

received from an ECS Data Center (DAAC), credit or debit memos, and other information

that does result in the changing of information either in the COTS accounting database or

the ECS Management Database. The COTS package will have the capability to execute

SQL statements directly on a SYBASE database such as the ECS Management Database.

Arguments:RWCString accountIdList, RWCString batchId

Return Type:Void

Privilege:Public

~MaBaBAASManagerB - This method represents the destructor of this class.

Arguments:

Return Type:Void

6-146 305-CD-029-002

Privilege:Public

Associations:

The MsBaBAASManagerB class has associations with the following classes:

Class: MsBaBAASB-COTS accessedBy

Class: MsBaManagerUIB initiateM&OActivities

Class: MsBaPriceTableB maintainTableEntries

Class: MsAcTrackingMgr retrieveOrderInformation

Class: MsAcUsrProfileMgr updateavailablebalance

6.3.3.8 MsBaManagerUIB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the user interface used to initiate BAAS activities that include

accessing the COTS, the price table update function, retrieve order information and report

generation.

Attributes:

BAASActivityId - This attribute represents which function of the BAAS will be selected

by the user interface class. The range of BAAS activities that may be requested includes,

but will not be limited to: enter test mode, invoke manager class for authorization, update

MsBaPriceTable, invoke MsAcTrackingMgr to retrieve order and request information,

invoke the cost accounting function, invoke the COTS package, invoke the custom

report function, or terminate selected activity.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

MsBaManagerUIB - This method represents the constructor for this class.

Arguments:

Return Type:Void

Privilege:Public

initiateBAASactivity - This method represents which function of the BAAS will be

selected by the user interface class. The range of BAAS activities that may be requested,

identified by BAASActivityId includes, but will not be limited to: enter test mode, invoke

manager class for authorization, update MsBaPriceTable, invoke MsAcTrackingMgr to

retrieve order and request information, invoke the cost accounting function, invoke

6-147 305-CD-029-002

the COTS package, invoke the report function, terminate selected activity

Arguments:RWCString BAASActivityId

Return Type:EcTint

Privilege:Public

~MsBaManagerUIB - This method represents the destructor for this class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsBaManagerUIB class has associations with the following classes:

Class: MsBaBAASManagerB initiateM&OActivities

6.3.3.9 MsBaPriceTableB Class

Parent Class:EcPriceTableB

Public:No

Distributed Object:No

Purpose and Description:

This class inherits all the attributes from the public EcPriceTable class but adds methods to

update the current prices in the table and to provide the capability to create new table entries

via the MsBaBAASManagerB class.

Attributes:

All Attributes inherited from parent class

Operations:

GeneratePriceElemId
This method represents the capability for M&O staff members to generat a unique price element
ID to be added to the instance of the standard price table. A price element can be either a data
granule , a type of media, shipping method, file size or service type. Arguments:RWCString
PriceElemId, RWCString homeDAAC, RWCString PriceElemIdDescrip, EcCurrency
PriceElemValue

MsBaPriceTableB
Arguments:

UpdateStdPrices - This method represents the capability for M&O staff members to update the
standard price table, which MsBaPriceTableB inherits all the attributes from, mapping each of the
EcPriceTableB attributes to an indentifiable price element ID, followed by a description of that
price element and further identified by which ECS Data Center (i.e. DAAC) caused the entry to be

6-148 305-CD-029-002

placed in the table. The method will either add, change or delete the entry. The BAAS COTS

package will use the same information contained in the standard price table when generating bill

invoices for ECS accounts.

Arguments:RWCString PriceElemId, RWCString PriceElemIdDescrip, RWCString

updateAction, EcCurrency PriceElemValue

Return Type:EcTVold

Privilege:Public

~MsBaPriceTableB
Arguments:

Associations:

The MsBaPriceTableB class has associations with the following classes:

Class: MsBaBAASManagerB maintainTableEntries

6.3.4 Billing and Accounting Dynamic Model

6.3.4.1 Billing and Invoicing a Science User

In this scenario, the science user will be billed and invoiced for requesting ECS data products or
services. This scenario traces the events associated with gathering the cost information, generating
statements, and posting the charges to the appropriate account. The scenario is depicted in
Figure 6.3-3.

6.3.4.1.1 Beginning Assumptions

A valid Science User with an account in good standing has already generated a request. Details of
the request, showing the products shipped and the price estimate, will have been captured by the
methods described in the MSS Accountability class MsAcTrackingMgr.

6.3.4.1.2 Interfaces with Other Subsystems and Segments

DSS and DPS will provide data product order information which MsAcTrackingMgr will be able
to store and retrieve from the ECS Management Database.

6.3.4.1.3 Stimulus

The Science User has submitted a request that initiates a product or service to be generated. Upon
completion of the request, details on products shipped traceable to a user will be stored in the ECS
Management Database area.

6.3.4.1.4 Participating Classes From the Object Model

MsAcUsrProfile

MsAcUsrProfileMgr

MsAcTrackingMgr

MsBaManagerUIB

MsBaBAASManagerB

6-149 305-CD-029-002

EcPriceTableB

MsBaBAASB-COTS

Billing Clerk(Actor)

Science User (Actor)

6.3.4.1.5 Beginning System, Segment and Subsystem State(s)

The system can be in normal operational mode, or it may be in training mode. The mode will be
taken into consideration when the cost resource data details on the request are gathered for pricing.
Requests performed under training mode will not be priced.

6.3.4.1.6 Ending State

The Science User is sent a statement detailing the charges incurred as a result of the activities
performed to fulfill a request.

6.3.4.1.7 Scenario Description

These steps describes the accompanying event trace diagram.

1)	 A Billing Clerk (Actor) requests that the user interface for the BAAS select Update
Accounts as an option to execute.

2)	 The user interface class, MsBaManagerUIB, requests the MsBaManagerB controlling class
to allow the current M&O user of the BAAS to update ECS accounts with new order
information. The MsBaManagerB class will check the user's accessLevel to determine if
access to the accounts is permitted by this M&O user (Billing Clerk Actor).

3)	 MsBaManagerB class will determine which order(s) for the Science User identified by
userId exist to be processed. These orders will be retrieved by invoking the
MsAcTrackingMgr public method GetOrdersByUser(userId).

4)	 The MsBaManagerB object will then request through the public method GetRequestInfo of
the MsAcTrackingMgr class, all requests tied to the order that have been shipped.

5)	 The MsAcTrackingMgr will then search for and return all requests tied to the original
Science User's order that have shipped.

6)	 MsBaManagerB invokes the EcPriceTableB public method, ProvidePrices given the list of
requestIds and a global parameter list (GlParameterList) supplied by the information
retrieved by MsAcTrackingMgr to price the total amount of the requests that have been
shipped. The GlParameterList will contain the data product(s) ordered, the type and
number of media used to fulfill the order, any services used to complete an order (i.e.
subsetting), the shipping method and the userId associated with the shipped data product
request(s). The price table information retrieved should match the price estimates provided
to the science user when the original order was placed.

7)	 MsBaBAASManagerB provides the MsBaBAASB-COTS package with the order/request
information for the current Science User and instructs the COTS to update this account.

6-150 305-CD-029-002

ScienceUser
Billing A

ScienceUser Billing Clerk MsAcUsrProfile MsAcUsrProfileMgr MsAcTrackingMgr MsBaManagerUIB MsBaBAASManagerB EcPriceTableB MsBaBAASB-COTS

6-151
305-C

D
-029-002

initiateBAASactivity(RWCString BAASactivityId="Update_Acct")

UpdateAccounts(accountIdList,
batchId)

GetOrdersByUser(RWCString userId)

retrieve all requests in the order
for a given userId that shipped ProvidePrices(userId,

requestId, GlParameterList)

UpdateAccounts(accountIdList,
batchId

GetAccountBalance(accountBalance)

RetrieveProfile(userId)

SetAccountBalance(accountBalance)

GetRequestInfo(orderStruct.State="shipped")

UpdateProfile(availableAccountBalance)

PrepareReports(reportId)

initiateBAASActivity()

distributeStatement(reportId)

Figure 6.3-3. Billing and Invoicing a Science User Event Trace

8)	 MsBaBAASB-COTS updates the user's appropriate accounts receivable by the amount of
the price of the fulfilled request. Normally, a batch of fulfilled requests that could be from
multiple ECS user accounts would be processed at a time, but for this scenario only one
Science User's account will be shown to be updated and billed.

9)	 As the BAAS COTS updates the Science User's account, the MsBaBAASB-COTS has the
ability to retrieve the Science User's profile information, through the public method
RetriveProfile from the MsAcUsrProfileMgr class. This information will be used to
prepare an accurate statement that will be sent to the account holder of record at the end of
the billing cycle.

10) MsBaBAASB-COTS then retrieves and debit the Science User's available balance to take
into account the fulfilled order that was being processed. The methods GetAccountBalance
and SetAccountBalance from MsAcUsrProfile can be accessed by the MsBaBAASB-
COTS which can interface with the ECS Sybase Management Database directly.

11) MsBaBAASManagerB takes the accountBalance computed by the MsBaBAASB-COTS
and updates the Science User's information through the method UpdateProfile from the
MsAcUsrProfileMgr class.

12) Each individual data request priced by MsBaBAASB-COTS provides input to the Billing
and Invoicing function of the COTS, which will generate statements on a monthly basis,
invoking the MsBaBAASManagerB class method PrepareReports. These statements will
be distributed to the accounts, which will reflect all data order activity during the monthly
billing cycle. For the purposes of this scenario, a statement will be considered a type of
report.

13) MsBaBAASManagerB notifies the MsBaManagerUIB class that a report (statement) has
been generated which can be mailed to the Science User.

14) An M&O staff member (Billing Clerk) accessing the MsBaManagerUIB interface class,
distributes the statement to the appropriate Science User's account.

14a) If the user's account is a type of pre-paid account, the statement issued will show the
current activity on the account for the past billing cycle.

14b) For non pre-paid accounts, the statement sent will be an actual bill for the services
and products provided during this period plus any previous balance not paid. An
actual bill will be generated in this case by the MsBaBAASB-COTS.

6.3.4.2 Receiving and Posting Science User Payments to Accounts Scenario

This scenario traces the events associated with receiving payments from a Science User and to
process these payments to the proper account. The scenario is depicted in event trace diagram in
Figure 6.3-4.

6.3.4.2.1 Beginning Assumptions

Assume the user's account does not have any amounts already credited to it (i.e. is not a pre-paid
account) and that the user has received a billing invoice for purchases during the past billing cycle.

6-152 305-CD-029-002

Science User Pmts
Receiving and Posting

ScienceUser Accountant MsAcUsrProfileMgr BilingClerk MsBaManagerUIB MsBaManagerB MsBaBAASB-COTS

NASA
Financial
Institution

Thread 1:
Posting Pmts

to ECS
Account

Thread 2:
Pre-Paid
Accounts

Thread 3:
Refund
Request

__

__

__

select
ReviewPmt

Batch

ProcessPmt(batchId)

UpdateProfile(accountBalance(s))

sendPurchaseOrder(pmtAmt, userId)

selectProcess
PurchaseOrders

ProcessPmt(batchId)
RecordPurchaseOrders

(batchId)

forwardPurchaseOrders(batchId)
UpdateProfile(accountBalance(s))

select
Review

Accounts MonitorAccounts() RetrieveAccount
Receivables()

RequestRefund(acctId, refundAmt)

ApproveRefund(acctId, refundAmt)

UpdateProfile(accountBalance)

SendPayment(pmtAmt, acctId)

Group payments
into batches

FwdPmtBatch(batchId)

ProcessPmtBatch
(batchID)

SendRefund
Request(acctId,

refundAmt)
DistributeRefund(acctId, checkId, refundAmt)

RefundNotification(acctId, refundAmt)

Figure 6.3-4. Receiving and Posting Science User Payments Event Trace

6-153
305-C

D
-029-002

6.3.4.2.2 Interfaces with Other Subsystems and Segments

External interfaces with financial institutions will be required to eventually deposit payments to a
U.S. Treasury account. This will performed by the BAAS COTS functionality that is capable of
supporting a variety of lockbox and Electronic Data Interchange (EDI) interfaces to accept
payments at the banking institution that has been configured to accept ECS payments and accept
electronic transfers.

6.3.4.2.3 Stimulus

A Science User has sent a payment to cover the outstanding balance on their account for ECS
products or services ordered during the past billing period.

6.3.4.2.4 Participating Classes From the Object Model

Science User (Actor)

Billing Clerk (Actor)

MsAcUsrProfileMgr

MsBaManagerUIB

MsBaBAASManagerB

MsBaBAASB-COTS

Accountant (Actor)

Financial Institution (Actor)

6.3.4.2.5 Beginning System, Segment and Subsystem State(s)

The system is in a normal operational mode.

6.3.4.2.6 Ending State

The Science User's account is credited the proper amount and the payment is received at the
financial institution's lockbox . A lockbox can be either electronic or a physical post office box
established by a financial institution for receipt of payments to an agency or organization such as
ECS. An alternate thread would involve overpayment by the Science User, triggering a refund
check to be eventually sent to the Science User.

6.3.4.2.7 Scenario Description

Thread 1:

The following steps describe the accompanying event trace for receiving and posting Science User
Payments to the proper account.

1)	 The Science User mails a check to the SMC; the check is received by a Billing Clerk at the
SMC and the clerk r groups the checks into a batch of payments to be processed by the
BAAS COTS.

2)	 The Billing Clerk will review the batch of checks received, which represents Science User
payments received during a given time period, and then prepares an Accounts Receivable

6-154 305-CD-029-002

batch report. Upon input of the batch entries, the payments will be credited to the
appropriate accounts receivables, represented by the COTS class MsBaBAASB-COTS
method ProcessPmtBatch.

3)	 The Billing Clerk then sends the checks to a NASA designated financial institution that
will deposit the payments into a Federal Treasury account.

4)	 Once the accounts reflect the payments received in the Accounts Receivable batch report,
the MsBaManagerB class invokes the MsAcUsrProfileMgr method, UpdateProfile to
adjust the accountBalance(s) affected in the LockBox Report of payments.

Thread 2: Pre-paid accounts, where funds are available in advance of purchases

1)	 The Science User sends a purchase order to the SMC; the purchase order is received by a
Billing Clerk, which invokes the COTS package through the MsBaManagerUIB user
interface class.

2)	 The SMC Billing Clerk will take purchase orders received during a given time period, and
prepare an Accounts Receivable batch report. Upon input of the batch entry, amounts on
the purchase orders will be credited to the appropriate accounts using the method
RecordPurchaseOrders, contained in the MsBaBAASB-COTS class. As the Science
User(s) of the account purchases ECS products, charges will be deducted from the
account's existing balance.

3)	 The Billing Clerk will then forward the batch of purchase orders to the financial institution
that has been set up to accept funds collected for deposit to a U.S. Treasury account.

4)	 Once the accounts reflect the purchase order amount(s), the MsBaManagerB class invokes
the MsAcUsrProfileMgr method, UpdateProfile to adjust the accountBalance(s) affected in
the list of purchase order "payments".

Thread 3: Overpayment of a Science User's account, triggering a refund request

1)	 The Science user sends a payment that exceeds the balance due; a Billing Clerk recognizes
the overage in the account when the accounts are balanced at the end of a reporting period
and invokes the RequestRefund method in the MsBaBAASB-COTS class.

2)	 The Billing Clerk, forwards a refund request for the proper amount to another actor, an
M&O staff member, such as an Accountant to approve the request.

3)	 The refund request is approved by the Accountant and the MsBaBAASB-COTS packages
generates a refund request that is forwarded to a NASA designated financial institution.

4) The NASA designated financial institution receives the refund request and distributes a
refund check to the Science User.

5)	 Once the refund check has been issued, the MsBaManagerB class invokes the
MsAcUsrProfileMgr method, UpdateProfile to adjust the accountBalance(s) by the amount
of the refund check issued.

6.3.5 Billing and Accounting Structure

Table 6.3-2 lists the components of the Billing and Accounting Application Service.

6-155 305-CD-029-002

Table 6.3-2. Billing and Accounting Components
Component Name COTS/Custom

Billing and Accounting Service COTS/Custom

BAAS Manager Custom

Price Table Custom (C++ code and scripts)

6.3.5.1 Billing and Accounting Service CSC

Purpose and Description

The Billing and Accounting Service CSC provides the COTS package and the Operator Interface
which allows operators at both the SMC and the DAACs to review account statues, input billing
information, perform account queries, balance accounts, and generate statements and reports by the
COTS package.

Mapping to objects implemented by this component

MsBaBAASB - COTS Billing and Accounting Package

MsBaManagerUIB

initiateBAASActivity - C++ code

6.3.5.2 Billing and Accounting Application Service (BAAS) Manager CSC

Purpose and Description

This class category provides services such as the startup and shutdown of the Billing and
Accounting Application Service and other BAAS activities that related to the running of the COTS
package. Such activities include both the manual and automatic processes that will update
accounts, issue requests for refunds, and forward payments from ECS users to a NASA designated
financial institution for deposit to a U.S. Treasury account. Other operations are inherited from the
external class, EcAgCOTSManager.

Mapping to objects implemented by this component

EcAgCOTSManager

MsBaBAASManagerB

MaintainPricingTables - Scripts and C++ code

UpdateAccounts - Scripts and C++ code

MonitorAccounts - Scripts and C++ code

PrepareReports - Scripts and C++ code

ProcessPmt - Scripts and C++ code

6.3.5.3 Pricing Table CSC

Purpose and Description

6-156 305-CD-029-002

This CSC provides a distributed object class to provide pricing information to external subsystems.
It also provides the means to maintain the table that will be maintained in the ECS Management
SYBASE database.

Mapping to objects implemented by this component

EcPriceTableB

ProvidePrices - C++

MsBaPriceTable

pdateStdPrices - C++

GeneratePriceElement - C++

6.3.6 Billing and Accounting Management and Operation

6.3.6.1 System Management Strategy

The Billing and Accounting Application Service is based on COTS product to be determined.

6.3.6.2 Operator Interfaces

The Operator Interface to Billing and Accounting is the graphical user interface provided by the
COTS product to be selected. The human interface will be predominately through a Microsoft
Windows client interface, with the capability to access a Unix server interface as well.

6.3.6.3 Reports

The following predefined Billing and Accounting reports will be provided by the BAAS COTS:

Chart of Accounts - list of all ledger accounts in the ECS. This report can be used to locate a
specific account within a ledger account.

Invoices - shows invoices received by M & O Staff for a given period

Purchase Orders - will show purchase orders initiated by M & O Staff.

Summary Reports - summarizes billing and accounting activity for a given reporting period (day,
month, fiscal year, year-to-date)

Inventory Receiving Reports - to track consumable items ordered from vendors that can be used
during the invoice reconciliation process (dormant until the third party contract to supply
consumables ends).

Other accounting statistics will be reportable via ad hoc reports provided by COTS product and the
report generation capability associated with the custom portion of the Billing and Accounting
Application Service and the MSS accountability CSCI.

Further information on billing and accounting reports is available in the Release B Overview
Design Specification (305-CD-020-002).

6-157 305-CD-029-002

6.4 Report Generation Service

6.4.1 Report Generation Service Overview

The Report Generation Service provides M&O staff with access to management information
across all areas of the ECS enterprise and DAAC operations. The service is implemented through
the collective reporting capabilities offered by the MSS Report Writer associated with the
management database, the report generation capabilities of specialized MSS management
applications, and the management reporting capabilities provided by other ECS application
subsystems. The service provides for the generation of both routine and adhoc reports and queries.
Adhoc reports and queries are supported through the COTS reporting/query tools associated with
the management database and through management application-specific COTS tools. An HTML
based user interface supports convenient browse access to routinely generated reports by non
specialists.

The Report Generation Service is for the exclusive use of ECS/DAAC management and M&O staff
responsible for monitoring system performance, workload, capacity utilization, security,
reliability, accountability, and user satisfaction. Access to all reporting tools is restricted to
registered M&O personnel. The Report Generation Service provides for the generation of a range
of standard management reports. A standard report, also referred to as a canned report, is one for
which a template specifying format and content has been previously defined and saved. These
standard reports are maintained by M&O database specialists. Standard reports can be run
automatically on a periodic basis (e.g., daily, monthly, quarterly) based on setup parameters
associated with the report. ECS management and M&O personnel can access these reports for
viewing from their desktop through the HTML-based user interface. Optionally, they can apply
time and domain scope to the standard reports to generate adhoc reports. Data underlying reports
can be saved in text format for import into an analysis tool such as a spreadsheet.

In support of the data specialist on the M&O staff, the Report Generation Service provides a
workbench for use in constructing adhoc reports/queries and for maintaining the complement of
standard management report templates. This workbench consists of a report writer COTS package
associated with the management RDBMS and a statistical analysis COTS package providing tools
for analyzing performance trends.

Report Generation Services are accessible only by M&O personnel. In general, the default scope
of reports at the SMC include all of the ECS enterprise whereas the scope at an LSM is the local
management domain.

Management reports fall in the following major categories:

Performance/Compliance - these reports are designed to reveal short and long term trends in
system operation relative to relevant benchmark requirement or performance goal. An example is
a report trending production operations adherence to schedule comparing planned versus actual
product generation completion times. Another example would be the average turnaround time to
resolve trouble tickets. A third example is the reliability of system components using outage times
obtained from the system fault management application.

Workload - these reports are designed to reveal short and long term trends in the system workload
such as the number of products generated and the number of problem reports submitted to the User
Services group.

6-158 305-CD-029-002

Resource Utilization - these reports are designed to reveal short and long term trends in the
utilization of resources for correlation with workload. These reports include resources such as
CPU/disk utilization in hosts, network utilization, as well as personnel resources such as User
Services. These reports present utilization at the host-site level and across sites.

User Satisfaction - these reports depict short and long term trends in the degree of satisfaction with
ECS products and services from the external user standpoint.

Profiles/Characterizations - these reports provide finer insight into diverse areas such as product
generation workload, fault occurrences, user service activities, and the like by showing the
distribution of basic measured elements in these areas according to subtypes. An example is the
volume distribution of product types generated over a specified interval.

Accountability - these reports provide an audit/trace of significant events associated with users and
their access of system resources and services, security, data integrity, fault management, billing
and accounting, and configuration management.

Section 6.4.2 itemizes specific reporting areas.

6.4.2 Report Generation Context

Figure 6.4.1 is the context diagram for the Report Generation Service.

The Report Generation service interfaces with the user (ECS management and M&O staff
personnel) for report generation requests, with system management agent services for lifecycle
commands, status reporting and event logging, and with the User Profile support within MSS
accountability to validate a requester is a member of the M&O staff.

MSS_Report_Generation

M&O
Staff

ManagementDatabase

Management Agent
Services

Accountability

This System

ReportGenerationRequests

Reports

ManagementData

Data Query

Commands

Status and
Events

M&O
User

Profile

M&O
User

Profile
Request

Figure 6.4-1. Report Generation Context Diagram

6-159 305-CD-029-002

6.4.3 Report Generation Object Model

The Report Generation object model is shown in Figure 6.4-2.

6.4.3.1 CGI_Vars Class

Parent Class:RWHashDictionary

Attributes:

All Attributes inherited from parent class

Operations:

CGI_Vars
Arguments:
Return Type:Void
Privilege:Public

LoadEnvironmentVariables
Arguments:
Return Type:Void
Privilege:Private

LoadGetElements
Arguments:
Return Type:Void
Privilege:Private

LoadPostElements
Arguments:
Return Type:Void
Privilege:Private

get
Arguments:char * szName
Return Type:CGI_Element *
Privilege:Public

get
Arguments:RWCString &rsName
Return Type:CGI_Element *
Privilege:Public

6-160 305-CD-029-002

Offpage

MsRgUIMgrB

MsRgStandMgmtRepB

MsRgPeriodicReportB MsRgRepWriterB

MsRgProxyB

Startup
Shutdown()

MsRgTrendAnalysisB
COTS

EcAgProxy

modeB

Management RDBMS

COTS

TMPL_Vars CGI_Vars

RWHashDictionary

TMPL_Vars()
insert(RWCollectable * pElement)
process(istream &stInput, ostream &stOuput, char *szMarker = '##')
process(char * szFileName, ostream &stOuput)
get(RWCString &rsName)

CGI_Vars()
get(char * szName)

get(RWCString &rsName)
LoadGetElements()

LoadPostElements()
LoadEnvironmentVariables()

RWCollectable

TMPL_Element

prsName
prsValue
rsDirectValue
szValue

TMPL_Element()
TMPL_Element(char * szName, char **szNewValue)
TMPL_Element(char * szName, RWCString **prsNewValue)
TMPL_Element(RWCString &rsNewName, char **szNewValue)
TMPL_Element(RWCString &rsNewName, RWCString **prsNewValue)
TMPL_Element(char *szName, RWCString *prsNewValue)
TMPL_Element(RWCString &rsNewName, RWCString *prsNewValue)
~TMPL_Element()
name()
value()

MsRgProxyB

Startup()
Shutdown()

MsAcUserProfile

EcAcProfileMgr

RWCollectableMsRgManagerB

EcPfManagedServer

MsRgRepGenSchedulerB

MsRgManager
~MsRgManager

MsRgRepGenScheduler
~MsRgRepGenScheduler

TimeNextCheck mode mode

modeB

Startup()
Shutdown()

metrics

Main(void)

ProcessAdhoc(CGI_Vars *CGI_Data, EcTChar *szUserId)
UpdateCatalog(CGI_Vars *CGI_Data, EcTChar *szUserId)

~MsRgUIMgrB()

ProcessBrowse(CGI_Vars *CGI_Data, EcTChar *szUserId)

ProcessLogin(CGI_Vars *CGI_Data, EcTChar *szUserId)

MsRgUIMgrB()

RepTitle
ReportID
RepInvocationInfo
Periodic
SchedIntvl
TimofDayToGen
/DtTmLastReport

MsRgStandMgmtRepB()
~MsRgStandMgmtRepB()
InsertNewRep()
DeleteReport()
GenerateReport()

[PERSISTENT CLASS]

Offpage Offpage

+ : EcTint
+ : EcTint

Offpage

[DISTR OBJ]

[Public]

OffpageOffpage

+
+ : RWCollectable *
+ : void
+ : void
- : TMPL_Element *

+
+ : CGI_Element *

+ : CGI_Element *
- : Void

- : Void
- : Void

Offpage

- : RWCString *
- : RWCString **
- : RWCString
- : char **

+
+
+
+
+
+
+
+
+ : char *
+ : Char *

+ : EcTint
+ : EcTint

Offpage

[DISTR OBJ]

[Public]

Offpage

Offpage

[Public]

+ : EcTint
+ : void

+ : EcTint
+ : void

- : RWCString

- : EcTint

+ : EcTint
+ : void

- : EcTint

+ : EcTint

- : EcTint
- : EcTint

- : void

- : EcTint

- : EcTint

+ : EcTint

- : RWCString
- : EcTint

- : RWBoolean
- : EcTint
- : RWTime
- : RWDate

+ : EcTint
+ : void
+ : EcTint
+ : EcTint
+ : EcTint

accesses/
updates

is generated
by

accesses

has variable
fields

in HTML
doc

inserted

uses

manages

accesses

populates

handles
request
for M&O

user profile

provide M&O
user profile

manages

schedules

requests
report

generation
requests

report
generatiion

manages

accesses
pregenerated

reports

obtains
query

variables
from

6-161
305-C

D
-029-002

Figure 6.4-2. Report Generation Object Model

Associations:

The CGI_Vars class has associations with the following classes:
Class: MsRgUIMgrB obtainsqueryvariablesfrom

6.4.3.2 EcAcProfileMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This is a public class (and a distributed object) that is exported by this service. Other

subsystems use this class in order to retrieve the user profile for a specified user.

Attributes:

None

Operations:

None

Associations:

The EcAcProfileMgr class has associations with the following classes:
Class: MsRgUIMgrB handlesrequestforM&Ouserprofile
Class: MsAcUserProfile populates

6.4.3.3 EcAgProxy Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This object class is primarily for COTS' manageability. It includes the MSS

instrumentation class library to enable the manageability of the COTS product. The front

end of this object is the MSS instrumentation code. The back-end of it is the interface to the

COTS. It is unique to every COTS. In security management, the logs of COTS are

monitored by this object. If an security event occurs, this object has to detect the incident

and send out an event notification to the MsAgSubagent.

Attributes:

6-162 305-CD-029-002

modeB - This attribute contains the mode in which the application is executing under. It
identifies functional activity(operational, testing, training).

Operations:

None

Associations:

The EcAgProxy class has associations with the following classes:
None

6.4.3.4 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port

monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class

also starts a thread that triggers scheduled events (i.e. polling ECS application's

performance metrics).

Attributes:

None

Operations:

None

Associations:

The EcPfManagedServer class has associations with the following classes:
None

6.4.3.5 ManagementRDBMS Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Management Data Relational Database (a COTS package).

6-163 305-CD-029-002

Attributes:

None

Operations:

None

Associations:

The ManagementRDBMS class has associations with the following classes:
Class: MsRgRepWriterB accesses
Class: MsRgTrendAnalysisB accesses

6.4.3.6 MsAcUserProfile Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The MsAcUserProfile class has associations with the following classes:
Class: EcAcProfileMgr populates
Class: MsRgUIMgrB provideM&Ouserprofile

6.4.3.7 MsRgManagerB Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

MsRgManager provides the interface between the Managed Process Framework and the

report generation scheduler. It allow the report generator to be controlled and monitored

by from the system management position.

6-164 305-CD-029-002

Attributes:

modeB
Data Type:EcTint
Privilege:Private
Default Value:

Operations:

MsRgManager - Class constructor.

Arguments:

Return Type:EcTint

Privilege:Public

Shutdown - Shutdown the report scheduler.

Arguments:

Return Type:void

Privilege:Public

Startup - Startup the report scheduler.

Arguments:

Return Type:EcTint

Privilege:Public

~MsRgManager - Class destructor.

Arguments:

Return Type:void

Privilege:Public

Associations:

The MsRgManagerB class has associations with the following classes:

Class: MsRgRepGenSchedulerB manages

6.4.3.8 MsRgPeriodicReportB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class contains browsable periodic (daily,weekly,etc) report output automatically

generated per the standard report schedule.

Attributes:

6-165 305-CD-029-002

None

Operations:

None

Associations:

The MsRgPeriodicReportB class has associations with the following classes:

Class: MsRgUIMgrB accessespregeneratedreports

Class: MsRgRepWriterB isgeneratedby

6.4.3.9 MsRgProxyB Class

Parent Class:EcAgProxy

Public:No

Distributed Object:No

Purpose and Description:

This class provides the interface between the ECS Management Agent Services and the

COTS report writer (MsRgReportWriter object) allowing ECS to issue lifecycle commands

to the COTS and receive processing events and status.

Attributes:

mode

Operations:

Shutdown - This method shuts down the report writer.

Arguments:

Return Type:EcTint

Privilege:Public

Startup - This method starts up the report writer.

Arguments:

Return Type:EcTint

Privilege:Public

Associations:

The MsRgProxyB class has associations with the following classes:

Class: MsRgTrendAnalysisB manages

6.4.3.10 MsRgRepGenSchedulerB Class

Parent Class:Not Applicable
Public:No

6-166 305-CD-029-002

Distributed Object:No

Purpose and Description:

MsRgRepGenScheduler initiates the generation of routine periodic standard reports based

on scheduling information and generation methods provided in the MsRgStandMgmtRep

catolog object.

Attributes:

TimeNextCheck - Time interval in hours to wait before checking for generation of a

periodic report.

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

MsRgRepGenScheduler - Class constructor.

Arguments:

Return Type:EcTint

Privilege:Public

~MsRgRepGenScheduler - Class destructor.

Arguments:

Return Type:void

Privilege:Public

Associations:

The MsRgRepGenSchedulerB class has associations with the following classes:

Class: MsRgManagerB manages

Class: MsRgStandMgmtRepB schedules

6.4.3.11 MsRgRepWriterB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is the COTS report writer product associated with the management DBMS.

Attributes:

None

6-167 305-CD-029-002

Operations:

None

Associations:

The MsRgRepWriterB class has associations with the following classes:

Class: ManagementRDBMS accesses

Class: MsRgPeriodicReportB isgeneratedby

Class: MsRgStandMgmtRepB requestsreportgeneratiion

6.4.3.12 MsRgStandMgmtRepB Class

Parent Class:RWCollectable

Public:No

Distributed Object:No

Persistent Class:True

Purpose and Description:

This class represents a registered ECS standard report. A standard report is one for which

a report template defining the format and data type content has been prebuilt and saved

using a management reporting tool. A subset of standard ECS reports are generated

according to a defined schedule which is characterized in this class (e.g., daily/weekly/etc).

Other reports are generated strictly on an ad-hoc basis per user request.

Attributes:

/DtTmLastReport - This is the data/time at which the last generation of this report was

performed.

Data Type:RWDate

Privilege:Private

Default Value:

Periodic - This flag is set to indicate a report which is to be produced on a periodic basis.

Data Type:RWBoolean

Privilege:Private

Default Value:

RepInvocationInfo - This attribute provides information on invoking the associated COTS

report writer to generate the report.

RepTitle - Report Title attribute.

Data Type:RWCString

Privilege:Private

Default Value:

ReportID - A unique report identification code for this report.

Data Type:EcTint

6-168 305-CD-029-002

Privilege:Private

Default Value:

SchedIntvl - The interval in days between generations of this report.

Data Type:EcTint

Privilege:Private

Default Value:

TimofDayToGen - Time of day to initiate generation of a periodic report.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

DeleteReport - This method deletes an existing report entry in the standard management

report catalog.

Arguments:

Return Type:EcTint

Privilege:Public

GenerateReport - This method generates the report invoking the associated management

reporting tool.

Arguments:

Return Type:EcTint

Privilege:Public

InsertNewRep - This method inserts a new report in the catalog of standard management

reports.

Arguments:

Return Type:EcTint

Privilege:Public

MsRgStandMgmtRepB - Constructor for this class.

Arguments:

Return Type:EcTint

Privilege:Public

~MsRgStandMgmtRepB - Destructor for the class.

Arguments:

Return Type:void

Privilege:Public

Associations:

6-169 305-CD-029-002

The MsRgStandMgmtRepB class has associations with the following classes:

Class: MsRgUIMgrB accesses/updates

Class: MsRgRepWriterB requestsreportgeneratiion

Class: MsRgTrendAnalysisB requestsreportgeneration

Class: MsRgRepGenSchedulerB schedules

6.4.3.13 MsRgTrendAnalysisB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The MsPmTrendAnalysis class generates trend data for a specified parameter over a

specified time period.

Attributes:

None

Operations:

None

Associations:

The MsRgTrendAnalysisB class has associations with the following classes:

Class: ManagementRDBMS accesses

Class: MsRgProxyB manages

Class: MsRgStandMgmtRepB requestsreportgeneration

6.4.3.14 MsRgUIMgrB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This is the gateway interface between the M&O HTML client and the Report Generation

service.

Attributes:

metrics
Data Type:EcTint
Privilege:Private
Default Value:

6-170 305-CD-029-002

Operations:

Main
Arguments:void

Return Type:EcTint

Privilege:Public

MsRgUIMgrB - Class constructor.

Arguments:

Return Type:EcTint

Privilege:Public

ProcessAdhoc - This method processes an M&O user's request for an adhoc management

report.

Arguments:CGI_Vars *CGI_Data, EcTChar *szUserId

Return Type:EcTint

Privilege:Private

ProcessBrowse
Arguments:CGI_Vars *CGI_Data, EcTChar *szUserId

Return Type:EcTint

Privilege:Private

ProcessLogin
Arguments:CGI_Vars *CGI_Data, EcTChar *szUserId

Return Type:EcTint

Privilege:Private

UpdateCatalog -

Arguments:CGI_Vars *CGI_Data, EcTChar *szUserId

Return Type:EcTint

Privilege:Private

~MsRgUIMgrB - Class destructor.

Arguments:

Return Type:void

Privilege:Private

Associations:

The MsRgUIMgrB class has associations with the following classes:

Class: MsRgStandMgmtRepB accesses/updates

Class: MsRgPeriodicReportB accessespregeneratedreports

Class: EcAcProfileMgr handlesrequestforM&Ouserprofile

Class: TMPL_Vars hasvariablefieldsinHTMLdocinserted

6-171 305-CD-029-002

Class: CGI_Vars obtainsqueryvariablesfrom
Class: MsAcUserProfile provideM&Ouserprofile

6.4.3.15 RWCollectable Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWCollectable class has associations with the following classes:
None

6.4.3.16 RWHashDictionary Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWHashDictionary class has associations with the following classes:
None

6.4.3.17 TMPL_Element Class

Parent Class:RWCollectable

Attributes:

6-172 305-CD-029-002

prsName
Data Type:RWCString *
Privilege:Private
Default Value:

prsValue
Data Type:RWCString **

Privilege:Private

Default Value:

rsDirectValue
Data Type:RWCString
Privilege:Private
Default Value:

szValue
Data Type:char **
Privilege:Private
Default Value:

Operations:

TMPL_Element
Arguments:char * szName, char **szNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:char * szName, RWCString **prsNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:RWCString &rsNewName, char **szNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:RWCString &rsNewName, RWCString **prsNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:char *szName, RWCString *prsNewValue

6-173 305-CD-029-002

Return Type:Void
Privilege:Public

TMPL_Element
Arguments:RWCString &rsNewName, RWCString *prsNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:
Return Type:Void
Privilege:Public

name
Arguments:

Return Type:char *

Privilege:Public

value
Arguments:

Return Type:Char *

Privilege:Public

~TMPL_Element
Arguments:
Return Type:Void
Privilege:Public

Associations:

The TMPL_Element class has associations with the following classes:
Class: TMPL_Vars uses

6.4.3.18 TMPL_Vars Class

Parent Class:RWHashDictionary

Public:No

Distributed Object:No

Purpose and Description:

The MsTtEntry class models a request for action on a particular problem and the

subsequent actions performed on it. This class encapsulates the common definition of a

trouble ticket configured in the ECS implementation of the Remedy Action Request

System

6-174 305-CD-029-002

Attributes:

All Attributes inherited from parent class

Operations:

TMPL_Vars
Arguments:
Return Type:Void
Privilege:Public

get
Arguments:RWCString &rsName
Return Type:TMPL_Element *
Privilege:Private

insert
Arguments:RWCollectable * pElement
Return Type:RWCollectable *
Privilege:Public

process
Arguments:istream &stInput, ostream &stOuput, char *szMarker = '##'

Return Type:void

Privilege:Public

process
Arguments:char * szFileName, ostream &stOuput

Return Type:void

Privilege:Public

Associations:

The TMPL_Vars class has associations with the following classes:

Class: MsRgUIMgrB hasvariablefieldsinHTMLdocinserted

Class: TMPL_Element uses

6.4.4 Report Generation Dynamic Model

6.4.4.1 Request to Browse a Report

This scenario traces the processing events associated with a user request through the Report
Generation HTML interface to browse a standard management report. Figure 6.4-3 contains the
scenario event trace diagram.

6-175 305-CD-029-002

Scenario: M&O user selects pregenerated standard report for browsing
from HTML UI.

M&O
Staff MsRgUIMgrB EcAcRofileMgr MsRgPeriodicReportB

page

menu

hits SUBMIT
on login

report selection

hits SUBMIT on
report selection ctor

page

HTML
formatted

report

get user profile

ctor()

user profile

requested report

Figure 6.4-3. Request to Browse a Management Report

6.4.4.1.1 Beginning Assumptions

None

6.4.4.1.2 Interfaces with Other Subsystems and Segments

None.

6.4.4.1.3 Stimulus

User logs in and selects a management report for browsing.

6.4.4.1.4 Participating Classes From the Object Model

MsRgUIMgrB

MsRgPeriodicReportB

6-176 305-CD-029-002

6.4.4.1.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal operational state.

6.4.4.1.6 Ending State

The requested report is displayed at the user's terminal through an HTML browser.

6.4.4.1.7 Scenario Description

1.	 A member of the M&O staff at the SMC or LSM brings up the Management Reports home
page from a desktop HTML browser, enters login information and hits the SUBMIT button.

2.	 The reporting gateway object, MsRgUIMgrB, receives the login request, validates the user
is a registered member of the M&O staff through the EcAcProfileMgr class, and returns the
Report Selection page.

3.	 The M&O user selects a particular report from the report selection list and hits the SUBMIT
button.

4.	 The MsRgUIMgrB gateway class receives the selection request, obtains the indicated pre
generated report from the MsRgPeriodicReportB container class, and returns it to the user.

6.4.4.2 Request to Generate an Adhoc Report

This scenario traces the events associated with a user request through the Report Generation
HTML interface to generate an adhoc report using a standard management report template but
specifying a particular time range/domain scope. Figure 6.4-4 contains the scenario event trace
diagram.

6.4.4.2.1 Beginning Assumptions

None.

6.4.4.2.2 Interfaces with Other Subsystems and Segments

None.

6.4.4.2.3 Stimulus

User selects a management report for browsing.

6.4.4.2.4 Participating Classes From the Object Model

MsRgUIB

MsRgStandardMgmtRepB

MsRgRepWriterB

6.4.4.2.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal operational state.

6-177 305-CD-029-002

Scenario: M&O user requests adhoc report

M&O
Staff

MsRgUIMgrB MsRgStandMgmtRepB MsRgRepWriterB

hits SUBMIT for
adhoc report

CTOR

CTOR()

GenerateReport(
adhocParams)

submit adhoc generation

adhoc report page

Figure 6.4-4. Request to Generate an Adhoc Report

6.4.4.2.6 Ending State

The requested report is displayed at the user's terminal through the web browser.

6.4.4.2.7 Scenario Description

1.	 A member of the M&O staff who has already logged in through the Management Reports
page, selects a standard report from the Report Selection page, enters a start/end time, and
hits the SUBMIT button.

2.	 The MsRgUIMgrB class receives the report request with the specified report ID and adhoc
time scope and, through the MsRgStandMgmtRepB class, submits a request to the
MsRgRepWriterB class to generate the report but with the user specified time scope
applied.

4. The MsRgRepWriterB COTS report writer generates the report.

5.	 MsRgUIMgrB receives indication of report completion from the MsRgStandMgmtRepB
generate report method and formats the report for return to the requesting user.

6-178 305-CD-029-002

6.4.4.3 Request to Add a New Report to the Service

This scenario traces the events associated with an M&O database specialist creating a new report
and adding it to the complement of standard periodically generated reports which can be browsed
through the web interface. Figure 6.4-5 contains the scenario event trace diagram.

Scenario: M&O data specialist creates a new standard report.

M&O
Data

Specialist MsRgRepWriterB MsRgUIMgrB

request M&O
data specialist

profile

Insert new report

ctor()

profile

EcAcProfileMgr MsRgStandMgmtRepB

create new
report template

hits Maintenance option on

new report identification params create catalog entry from user params

confirm new report included

return Maintenance page

reporting page

Figure 6.4-5. Request to Add a New Report to the Service

6.4.4.3.1 Beginning Assumptions

None.

6.4.4.3.2 Interfaces with Other Subsystems and Segments

None.

6.4.4.3.3 Stimulus

User selects a management report template and enters a particular time/domain scope.

6.4.4.3.4 Participating Classes From the Object Model

MsRgWebUIB

MsRgUIMgrB

MsRgPeriodicReportB

MsRgRepWriterB

6-179 305-CD-029-002

MsRgStandMgmtRepB

6.4.4.3.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal operational state. The M&O data specialist
has already logged in to the Report Writer COTS tool and the Management Reports home page.

6.4.4.3.6 Ending State

The new report title is added to the complement of standard reports. It can be viewed through the
web browser interface.

6.4.4.3.7 Scenario Description

1.	 The M&O database specialist creates a new report using the MsRgRepWriterB COTS class
and saves it as a report template.

2.	 The M&O database specialist then selects the Maintenance option on the Management
Reports main menu.

3.	 The MsRgUIMgrB reporting gateway class authenticates that the user is an M&O data
specialist with privilege to update the standard report catalog and returns the maintenance
page.

4.	 The specialist enters the title of the newly created report, the resource name of the report
template, and optional scheduling parameters if the report is to be automatically generated
on a periodic basis. The specialist then hits the SUBMIT button on the page.

5.	 The MsRgUIMgrB gateway builds a new RgStandMgmtRepB entry from the user's
parameters and inserts it in the catalog of standard reports. A confirmation is then sent back
to the M&O data specialist that the report has been added.

6.4.5 Report Generation Service Structure

Table 6.4-1 lists the components of the Report Generation Service.
Table 6.4-1. Report Generation Service Components

Component Name COTS/Custom

Report Generation Manager Custom (C++ code)

Report Generator COTS

Report Generation Proxy Agent Custom (C++ code)

6.4.5.1 Report Generation Manager CSC

Purpose and Description

This CSC provides the custom software support for interfacing with the ECS managed process
framework, for supporting M&O user interactions through an HTML interface, for maintaining a
catalog of standard management reports, and for automatically generating selected reports on a
periodic basis.

Mapping to objects implemented by this component

MsRgManagerB

6-180 305-CD-029-002

MsRgUIMgrB

MsRgRepGenSchedulerB

MsRgStandMgmtRepB

6.4.5.2 Report Generator CSC

Purpose and Description

This COTS component is the report writer accompaniment to the Management DBMS. It supports
the generation of reports and report templates as well as adhoc queries.

Mapping to object implemented by this component

MsRgRepWriterB

6.4.5.3 Report Generator Proxy Agent

Purpose and Description

This proxy (exported by the Management Agent Services) facilitates the management (startup and
shutdown) of Report Generation, and the logging of events.

Mapping to objects implemented by this component

MsRgProxyB

6.4.6 Report Generation Management and Operation

6.4.6.1 System Management Strategy

The Report Generation Service utilizes the public class exported by the Management Agent
Services, represented by MsRgProxyB for management of the Report Writer COTS package and
the EcPfManagedServer, part of the ECS process framework for management of the custom report
generation software. These classes facilitate the management of the overall service.

6.4.6.2 Operator Interfaces

The Report Generation Service provides an HTML based web interface allowing users to browse
automatically generated periodic reports and to generate limited adhoc reports. This interface also
allows an M&O Database specialist to add/delete/update the catalog of standard management
reports.

The Report Generation Service provides the COTS unique user interface provided by the report
writers to generate adhoc queries against the management database and to create/modify standard
report templates.

6.4.6.3 Reports

Table 6.4-2 lists the management reports provided by the Release B Report Generation Service.

6-181 305-CD-029-002

Table 6.4-2 Release B Management Reports (1 of 2)
Report Title

Enhancement Proposal Status Report

Routine Data Production Performance Detail Report

Routine Data Production Performance Summary Report

User-Requested Data Production Performance Detail Report

User-Requested Data Production Performance Summary Report

Ground Operations Activity Performance Detail Report

Ground Operations Activity Performance Summary Report

Product Generation Status Detail Report

Product Generation Status Summary Report

Resource Performance Report

CPU Load Report

Interface Traffic Report

Ethernet Traffic Report

SNMP Traffic Report

SNMP Operations Report

Site Host Resource Utilization Report

SMC Host Resource Utilization Report

Disk Space Report

User Service Performance Report

Data Distribution Performance Report

Media Distribution Profile Report

Data Orders Tracking Summary Report

Data Products Tracking Summary Report

Returned Product Summary Report

Fault Management Report

Trouble Status Report

Ethernet Errors Report

SNMP Errors Report

SNMP Errors Report

SNMP Authentication Failures Report

SNMP Event Log Report

Site Host

EMC Host Errors Report

Ground Resource Availability Audit Report

Data Accountability Audit Report

Pending Service Request Audit Report

Errors Report

6-182 305-CD-029-002

Table 6.4-2 Release B Management Reports (2 of 2)

User Activity Audit Report

Security Audit Report

User Characterization Report

System Access Profile Report

Utilization of User Services Personnel Summary Report

Storage Management Activity Report

Storage Management Inventory Update Report

Ingest History Report

Ingest Error Report

Processing Log Report

Production and Data Processing Request Status Report

Planning Workload Processing Turn-around Report

Planning Management Report

Account Authorization Report

Service Cost Schedule Report

Standard Product Cost Schedule Report

Accounts Payable Report

Accounts Receivable Report

Functional Allocation Report

Configuration Status Report

System Information Report

SNMP Event Notification

Indentured Level of Assembly List Report

Document Configuration Status Report

System Configuration Tracking Report

Maintenance Schedule Report

Training Program Report

Inventory Status Report

Security Compromise Report

Security Compromise Statistics Report

Virus Detection Report

Report Title

Report

6.5 Fault Management

6.5.1 Fault Management Overview

The Fault Management Application Service provides the capability to detect, diagnose, isolate and
recover from faults that occur in the managed objects within ECS. The entities or managed objects
in ECS that need to be monitored for faults include network devices (such as hosts, hubs and

6-183 305-CD-029-002

routers), systems software (databases and middleware such as DCE) and applications (such as the
Planning Subsystem and the Data Server Subsystem). Fault Management encompasses activities
such as the ability to trace faults through the system, to execute diagnostic tests, and to initiate
corrective or recovery actions upon the isolation of errors in order to correct the faults. The
detection of faults involves the identification of an unacceptable change in the state of a managed
object. The diagnosis and isolation of a fault involves the determination of the cause of the fault
from the correlation of recorded symptom using HP Openview and Tivoli and where necessary,
through the use of diagnostic tests. The recovery from a fault condition involves the initiation of a
corrective action in order to restore the system to normal operational status.

The Fault Management Application Service has two instances: at each of the DAACs and at the
SMC. The Fault Management Application Service resident at each DAAC collects and operates on
fault data local to the site. Summaries of this data are sent periodically to the SMC. The SMC Fault
Management Application Service operates on these summaries of fault data collected system-wide
by Fault Management Application Service at the various DAACs in order to perform system-wide
fault trends analysis.

The Fault Management Application Service at each DAAC provides the capability to generate
notifications of fault conditions and alert indicators in the event of defined thresholds being
exceeded. It provides diagnostic information and the diagnostic tests that facilitate the isolation,
location and the identification of the cause of the faults local to the DAAC. It further provides the
mechanisms for the generation of notifications upon the detection of faults, and the mechanisms
for the definition of automated actions to be executed in response to the occurrence of well-defined
faults or events. The DAAC Fault Management Application Service, provides the mechanism to
generate reports based on information in its database. The Fault Management Application Service
at each site, sends summary data periodically to the SMC for trends analysis.

Since a fault is an unacceptable change in the state of a managed object, it follows that the Fault
Management Application Service provides for the detection of changes in the state of managed
objects in order to be able to distinguish the unacceptable changes that constitute faults from
acceptable changes. The Fault Management Application Service, therefore, provides the
capabilities for real-time configuration management to include the startup, shutdown and
discovery of ECS applications. Further, since the service maintains the status of resources, it
provides the capability to provide the status of these resources, such as processors and associated
disks, upon requests from subsystems such as the Planning Subsystem.

The SMC Fault Management Application Service provides the mechanism to receive notifications
of fault conditions from the Fault Management Services at the DAACs. This is expected to
facilitate the coordination of the isolation, diagnosis and the resolution of multi-site and system
wide faults, disruptions, and security events such as break-in attempts. This may, in some cases,
include coordination with external providers for the analysis and recovery from fault conditions.
The SMC Fault Management Application Service provides the mechanism to generate reports
based on the information it collects and receives from the various Fault Management Application
Services at the DAACs.

Faults in hardware devices are detected and reported through the use of a combination of the
industry standard Simple Network Management Protocol traps and IP status polling. Faults in
software are reported by the Management Agent Services. ECS applications may report faults to

6-184 305-CD-029-002

the Fault Management Application Service through the use of a public class within the ECS
Process Framework and the Management Agent Service. Management Agent Services is
described in detail in the section four. The Overview Design Specification (305-CD-020-001)
provides the context and the criteria for ECS applications to use the Process Framework to report
their faults. Table 6.5-1 provides a representative sample of the faults and events detected and
reported by the Fault Management Application Service for different managed objects in the
system. The list of faults/events and the managed objects is not all-inclusive. The Fault
Management Application Service provides for the notification of any type of event associated with
a managed object through the public classes exported by the Management Agent Services and the
Process Framework.

Table 6.5-1. Examples of Faults and Events Reported by ECS Managed Objects
(1 of 2)

Managed Object Fault/Event

Standard SNMP Traps Link Down

Link Up

Authentication Failure

Network Device Node Added

Node Down

Node Unknown

Node Up

Node Deleted

Node Marginal

Interface Card Interface Added

Interface Disconnected

Interface Marginal

Interface Deleted

Interface Down

Interface Unknown

Interface Up

Interface Unmanaged

Disk drive Disk drive on-line

Disk drive off-line

Disk drive warning

Disk drive unknown state

Printer Printer printing

Printer warming

Printer idle

6-185 305-CD-029-002

Table 6.5-1. Examples of Faults and Events Reported by ECS Managed Objects
(2 of 2)

Managed Object Fault/Event

Tape drive Tape drive on-line

Tape drive off-line

ECS Application Application missing

Application failed

Application startup

Application discovered

Application shutdown

Cold Startup

Warm Startup

ECS Database Database up

Database down

Database update error

Database access error

Database lock table full

Database media failure

6.5.1.1 Fault Management COTS

HP OpenView Network Node Manager has been selected as the Enterprise Management
Framework. This COTS product inherently provides the capabilities for fault and configuration
management of TCP/IP networks (SNMP devices). In the Object Model, Figure 6.5-2, HP
OpenView Network Node Manager is represented by the object labeled ManagementFramework.
Sentry and The Enterprise Console from Tivoli have been selected to perform rules based fault
correlation. The Enterprise Console receives events from HP Openview and Sentry agents and
performs event correlation using a configurable set of rules. The HP OpenView Network Node
Manager provides capabilities and features to allow customization for fault and for the
configuration management of the network. This customization, represented as MsFlConfig in the
Object Model, includes the following tasks:

• discovery of IP-addressable devices on the network

• creation maps and submaps

•	 add discovered managed objects to the appropriate submaps to graphically represent the
topology of the network

• change and propagate status of managed object based on faults/events

• definition faults to detect

• definition of monitoring criteria

• definition of thresholds on attribute values

6-186 305-CD-029-002

• definition of notification mechanisms

• definition of forwarding criteria

• definition of automatic actions to be executed in response to specific faults

• association recovery actions with faults

• configuring the event log browser for browsing of fault/events

The product also provides application programming interfaces (APIs) and an extensible graphical
user interface to allow its capabilities to be extended, through custom development, for the fault
and configuration management of non-SNMP entities such as ECS applications. This custom
development, with PDL, is discussed in the appropriate sections of the object model.

6.5.2 Fault Management Context

The Fault Management Application Service, as shown in the context diagram, interfaces with ECS
managed objects (via Management Agent Services), and with systems external to ECS, namely
EBNET, SDPF, TRMM, NOLAN, NOAA, NSI, PSCN and local campus networks. The managed
objects, as described in the previous section, comprise hardware resources (such as routers, hosts
and hubs), systems software (including databases and middleware) and ECS applications (such as
the Data Server, the Planning subsystem). The information exchanged across these interfaces, as
shown in the diagram, is described here.

The Management Agents co-resident with the managed object classes provide notifications of
faults with diagnostic information to the Fault Management Application Service. The Performance
Management Application Service sends notifications of conditions of degradation of performance
to the Fault Management Application Service. The Security Management Application Service
sends notifications of security events to the Fault Management Application Service.

The external systems provide fault notifications, fault status, estimated down time of resources due
to the fault, results of fault analysis, fault resolution information, and summary fault and
performance information. Figure 6.5-1 contains the Fault Management context diagram.

6.5.3 Fault Management Object Model

Figure 6.5-2, the Object Model for Fault Management depicts the major classes and their
associations with one another. These are described below:

6.5.3.1 EcDAAC Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This public class provides methods to respond to requests from other subsystems for the

status of resources (processors and their associated disks).

Attributes:

None

6-187 305-CD-029-002

Performance Management
Application Service

Site
Fault Management
Application Service

External Systems

SMC
Fault Management
Application Service

This System

Summary Reports
Fault Notifications

Thresholds Exceeded
(via HP OpenView Common Management Services)

Fault Notifications
Fault Analysis Information

Fault Recovery Coordination (via Email & phone)

Fault Notifications
Fault Analysis Information

Fault Recovery Corrdination (via Email & phone)

Fault
Recovery

Coordination
(via phone &

Email)

(via Management Agent Services)

Fault Notifications
(via Management Agent Services)

Tivoli

Security Alerts

6-188
305-C

D
-029-002

Security Management
Application Service

Managed Objects

Figure 6.5-1. Fault Management Context Diagram

[DISTR OBJ][DISTRIBUTED] Imported [MAS]

MsFlAction

MsFlConfig

MsFlManager

MsTrap

EcDAAC

MsFlTest

RunTest(char* testId)

ManagementFramework

COTS (HPOV)

COTS

configured COTS

custom

custom
custom

ShutdownECSApplication(char* hostname, char* AppName)

HardwareTrap

COTS

Get_CPU_List(char* Filter)
Get_Disk_List(char* CPU_ID)

MsFlSMC

SendSummaryData()

MsFlExtSys

SendMail(char* destination)

MsAgSubAgent

custom

GetAppList(char* AppName)

testId

SoftwareTrap

EcDAAC()
~EcDAAC()

MsFlManager()
~MsFlManager()

[DISTRIBUTED]

~MsFlExtSys()
MsFlExtSys() MsFlSMC()

~MsFlSMC()

SoftwareTrap()
~SoftwareTrap()

agentAddr
enterpriseId
genericTrapId
specificTrapId
time
varBindList

MsTrap()
~MsTrap()

pEventMgr
pMonitor
pTblMgr
pSugAgentCfg
pDepGate
pPortMonitor
pDiscoverer
pBuffer
pThread

MsAgSubAgent()
~MsAgSubAgent()
SchdThreadExec(pthread_addr_t pThread)

MsFlAction()
~MsFlAction()
ECSAppDiscoveryTrap(char* hostname, char* applicationName, int
applicationInstanceNumber, int countOfRecords, char* varBindList)
ECSAppStartupTrap(char* hostname, char* applicationName, int
applicationInstanceNumber, int countOfRecords, char* varBindList)
ECSAppShutdownTrap(char* hostname, char* applicationName, int
applicationInstanceNumber)
ECSTapeUpTrap(char* hostname, int time, char* deviceId)
ECSTapeDownTrap(char* hostname, int time, char* deviceId)
ECSDiskUpTrap(char* hostname, int time, char* deviceId)
ECSDiskDownTrap(char* hostname, int time, char* deviceId)
ECSprinterUpTrap(char* hostname, int time, char* deviceId)
ECSprinterDownTrap(char* hostname, int time, char* deviceId)
ECSProcessMissingTrap(char* hostname, char* applicationName, int
applicationInstanceNumber)
ECSProcessFailedTrap(char* hostname, char* applicationName, int
applicationInstanceNumber)

MaFlFauleCorrelation

COTS (Tivoli)

Offpage[Public]
Offpage

+

Offpage

+
+

++

[Public]

+

- : String

+
+

+
+

+
+ +

+

+
+

- : String
- : Integer
- : Integer
- : Integer
- : time
- : String

+
+

+
+
+

+

+

+
+
+
+
+
+
+

+

Offpage

IsRunBy

Processes

uses

is managed by

is used by

is maintained by

initiates

is used by

communicates
with

uses

6-189
305-C

D
-029-002

Figure 6.5-2. Fault Management Object Model

Operations:

EcDAAC - This method represents the constructor of the class.

Arguments:

Return Type:Void

Privilege:Public

GetAppList - This method returns a list of application classes (dependent) given an

application class name as input.

Arguments:char* AppName

Return Type:Void

Privilege:Public

Get_CPU_List - This method takes a filter as an argument, and returns a list of hosts

matching the filter criteria.

Arguments:char* Filter

Return Type:Void

Privilege:Public

Get_Disk_List - This method returns a list of disks attached to a specified processor. The

processor is specified by the argument CPU_ID.

Arguments:char* CPU_ID

Return Type:Void

Privilege:Public

~EcDAAC - This method represents the destructor of the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcDAAC class has associations with the following classes:
Class: MsFlManager ismanagedby

6.5.3.2 HardwareTrap Class

Parent Class:MsTrap

Public:No

Distributed Object:No

Purpose and Description:

This class represents traps received from hardware devices. There are 5 standard traps

defined, in addition to which there are enterprise traps defined by the vendor of the routers

and hubs that will be deployed in ECS. These are COTS provided.

6-190 305-CD-029-002

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The HardwareTrap class has associations with the following classes:
None

6.5.3.3 MaFlFauleCorrelation Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

MsFlFaultCorrecation is a COTS product from Tivoli. It consists of the Enterprise Console

and Sentry components. It communicates with HP Openview via a COTS adaptor and with

agents supplied by Sentry. It performs rules based fault correlation of fault event.

Attributes:

None

Operations:

None

Associations:

The MaFlFauleCorrelation class has associations with the following classes:
Class: ManagementFramework uses

6.5.3.4 ManagementFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is HP OpenView Network Node Manager, a COTS product. This product

6-191 305-CD-029-002

provides the management framework with the underlying management services for the
management of SNMP-based network devices. It also provides the necessary integration
points and services for the integration of management applications. Since this class is all
COTS, it will not be described in detail here. The reader is referred to the documentation
set of HP OpenView Network Node Manager for further details on the product.

Attributes:

None

Operations:

None

Associations:

The ManagementFramework class has associations with the following classes:
Class: MsFlTest IsRunBy
Class: MsTrap Processes
Class: MsAgSubAgent communicateswith
Class: MsFlAction initiates
Class: MsFlConfig ismaintainedby
Class: MaFlFauleCorrelation uses
Class: MsFlManager uses

6.5.3.5 MsAgSubAgent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This managed object class supports SNMP MIB extensions. It receives requests from the

master agent. Based on Get or Set requests, it performs the retrieval or set functions onto

resource or resource managers using available API. This object will instantiate another

object MsAgMonitor to perform local polling on resources on the host.

Attributes:

pBuffer - This attribute represents a pointer to a StaticBuffer.

pDepGate - This attribute represents a pointer to a deputy gate.

pDiscoverer - This attribute represents a pointer to a discoverer.

6-192 305-CD-029-002

pEventMgr - This attribute represents a pointer to an event manager.

pMonitor - This attribute represents a pointer to a monitor.

pPortMonitor - This attribute represents a pointer to a port monitor.

pSugAgentCfg - This attribute represents a pointer to the subagent configuration.

pTblMgr - This attribute represents a pointer to a table manager.

pThread - This attribute represents a pointer to a thread.

Operations:

MsAgSubAgent - This method represents the constructor of the object.
Arguments:

SchdThreadExec - This method spawns a DCE thread.
Arguments:pthread_addr_t pThread

~MsAgSubAgent - This method represents the destructor of the object.
Arguments:

Associations:

The MsAgSubAgent class has associations with the following classes:
Class: ManagementFramework communicateswith

6.5.3.6 MsFlAction Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The class MsFlAction provides the capabilities to process events generated from external

stimuli. This processing may include the issuing of notifications to an operator via the

Graphical User Interface using the services of HP OpenView NNM, or the launching of

automated actions in response to the received notifications, based on the configuration

information set up. The methods in this class are executed in response to receiving traps.

The traps received and processed are listed below against with the managed objects they

correspond to:

Network devices (provided by HP OpenView) - OV_node_up, OV_node_down

Communication links (provided by HP OpenView) - OV_link_up, OV_link_down

6-193 305-CD-029-002

Interface cards (provided by HP OpenView) - OV_IF_up, OV_IF_down

Tape drives (ECS-specific) - ECS_tape_up, ECS_tape_down)

Disk drives (ECS-specific) - ECS_disk_up, ECS_disk_down

Printers (ECS-specific) - ECS_printer_up, ECS_printer_down

ECS applications (ECS-specific) - ECS_application_startup, ECS_application_shutdown,
ECS_application_discovery , ECS_application_missing, ECS_application_failed

Attributes:

None

Operations:

ECSAppDiscoveryTrap - This method is executed when a discovery trap is received. A
discovery trap is received when the agent sends a trap after discovering an application on
an ECS managed host. The method does the following: Based on the parameters received,
a selection name is constructed using the hostname, application name, and the instance
number The submap for the host is located

Case: Instance number = 0 This indicates that the software exists on the host, but there are
no instances running An entry is created in the Object database, and a symbol (icon) is
created on the submap corresponding to the host, based on the selection name The color of
the icon is put into a state to indicate that it is not running

Case: Instance number > 0 This indicates the discovery of an instance of the application
The Object database is searched for an occurrence of instance. If not found, a submap for
the new application instance is created For each process in the var bind list: create an
object for each process in the var bind list, set the shutdown UUID for the process, assign
the object a selection name based on the naming convention, create a symbol corresponding
to the process object, put the symbol on the appropriate submap, set the process symbol
to a normal state .

Arguments:char* hostname, char* applicationName, int applicationInstanceNumber, int

countOfRecords, char* varBindList

Return Type:Void

Privilege:Public

ECSAppShutdownTrap - This method, executed in response to receiving a
ShutdownTrap, processes the variable bindings of the Trap, updates the attributes of the
appropriate managed object in the Object database, uses the methods provided by the
ManagementFramework (HPOV) in order to remove the iconic representation of the
physical ECS Application on the graphical user interface. This method does the following:
A selection name is constructed from the hostname, the application name, and the instance
number. The Object database is searched to locate the Object and the submap

6-194 305-CD-029-002

corresponding to this application . The symbols corresponding to each component process

are located and deleted. the objects corresponding to each component process are located

and deleted If this is the only instance of the application, the instance number is set to zero,

else the object and symbol corresponding to the application are deleted

Arguments:char* hostname, char* applicationName, int applicationInstanceNumber

Return Type:Void

Privilege:Public

ECSAppStartupTrap - This method, executed in response to receiving a StartupTrap,

processes the variable bindings of the Trap, updates the attributes of the appropriate

managed object in the HPOV Object and Map databases, uses the methods provided by the

HPOV in order to display an iconic representation of the physical ECS Application on the

graphical user interface. A startup trap is sent to the HP OpenView when an application

completes the startup process. The varbinds included as part of the trap include the

application name, application instance, count of the processes info (include the pid, the

process name, and the UUID of the shutdown method). This method performs the

following: - constructs the selection name for the application instance by concatenating the

hostname, application name, and the instance number. - locates the submap for the host

specified by the hostname - parses the var bind list for the components of the application

(the var bind list contains sequences of : the process name, process id, and the UUID of the

shutdown interface for each process belonging to the application) - for each component

process in the var BindList: it creates a selection name , creates an object for the process

in the Object database , stores its selection name, shutdown UUID in the Object database

, creates a sybmol for the process on the parent application submap, sets the state of the

symbol to normal

Arguments:char* hostname, char* applicationName, int applicationInstanceNumber, int

countOfRecords, char* varBindList

Return Type:Void

Privilege:Public

ECSDiskDownTrap - This method constructs a selection name for the managed object,

locates it in the Object database, updates its status, and writes a record for RMA purposes

via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceId

Return Type:Void

Privilege:Public

ECSDiskUpTrap - This method constructs a selection name for the managed object,

locates it in the Object database, updates its status, and writes a record for RMA purposes

via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceId

Return Type:Void

Privilege:Public

ECSProcessFailedTrap - This method constructs a selection name for the managed

6-195 305-CD-029-002

object, locates it in the Object database, updates its status, and writes a record for RMA

purposes via LogEvent in MsEvent_c

Arguments:char* hostname, char* applicationName, int applicationInstanceNumber

Return Type:Void

Privilege:Public

ECSProcessMissingTrap - This method constructs a selection name for the managed

object, locates it in the Object database, updates its status, and writes a record for RMA

purposes via LogEvent in MsEvent_c

Arguments:char* hostname, char* applicationName, int applicationInstanceNumber

Return Type:Void

Privilege:Public

ECSTapeDownTrap - This method constructs a selection name for the managed object,

locates it in the Object database, updates its status, and writes a record for RMA purposes

via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceId

Return Type:Void

Privilege:Public

ECSTapeUpTrap - This method constructs a selection name for the managed object,

locates it in the Object database, updates its status, and writes a record for RMA purposes

via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceId

Return Type:Void

Privilege:Public

ECSprinterDownTrap - This method constructs a selection name for the managed object,

locates it in the Object database, updates its status, and writes a record for RMA purposes

via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceId

Return Type:Void

Privilege:Public

ECSprinterUpTrap - This method constructs a selection name for the managed object,

locates it in the Object database, updates its status, and writes a record for RMA purposes

via LogEvent in MsEvent_c

Arguments:char* hostname, int time, char* deviceId

Return Type:Void

Privilege:Public

MsFlAction - This method represents the constructor of the class.

Arguments:

Return Type:Void

Privilege:Public

6-196 305-CD-029-002

~MsFlAction - This method represents the destructor of the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsFlAction class has associations with the following classes:
Class: ManagementFramework initiates

6.5.3.7 MsFlConfig Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the capability of the ManagementFramework (HPOV NNM) to

maintain a mapping between traps (or events) and the Actions to be executed in response

to their occourance. The capability for the definition of the configured informationis made

available by the ManagementFramework via the graphical user interface to the operator.

The reader is referred to the documentation set of HP OpenView Network Node Manager

for further details on this capability.

Attributes:

None

Operations:

None

Associations:

The MsFlConfig class has associations with the following classes:
Class: ManagementFramework ismaintainedby

6.5.3.8 MsFlExtSys Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

6-197 305-CD-029-002

This class represents the interface to external systems such as NSI.

Attributes:

None

Operations:

MsFlExtSys
Arguments:

Return Type:Void

Privilege:Public

SendMail - This method sends a mail message to the external system as specified by the

destination field.

Arguments:char* destination

Return Type:Void

Privilege:Public

~MsFlExtSys - This is the destructor for this class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsFlExtSys class has associations with the following classes:
Class: MsFlManager isusedby

6.5.3.9 MsFlManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides the necessary functionality to perform the real-time configuration

management functions of the discovery, startup and shutdown of ECS applications (such

as the Science Data Server or the Data Processing Service). It also provides the

functionality to dispatch real-time notifications to ECS Applications via the Management

Agent Services. These functions are initiated by external stimuli (operator actions) at the

user interface, which is provided by HP OpenView NNM.

Attributes:

6-198 305-CD-029-002

None

Operations:

MsFlManager - This method represents the constructor of the class.

Arguments:

Return Type:Void

Privilege:Public

ShutdownECSApplication - This method creates an instance of EcAgManager (the class

exported by the Management Agent Services, and is a proxy to the application) and invokes

the Shutdown method. This effects a graceful shutdown of the application. As an

application is shut down gracefully, the application emits a shutdown trap to the Fault

Management Application Service in response to which the application instance is

deregeistered.

Arguments:char* hostname, char* AppName

Return Type:Void

Privilege:Public

~MsFlManager - This method represents the destructor of the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsFlManager class has associations with the following classes:
Class: EcDAAC ismanagedby
Class: MsFlExtSys isusedby
Class: MsFlSMC isusedby
Class: ManagementFramework uses

6.5.3.10 MsFlSMC Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the interafce between the Fault Management Application Service at a

site and the Fault Management Application Service at the SMC.

Attributes:

6-199 305-CD-029-002

None

Operations:

MsFlSMC - This is the default constructor for this class.

Arguments:

Return Type:Void

Privilege:Public

SendSummaryData - This method sends summary data from the site to the SMC.

Arguments:

Return Type:Void

Privilege:Public

~MsFlSMC - This is the destructor for this class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsFlSMC class has associations with the following classes:
Class: MsFlManager isusedby

6.5.3.11 MsFlTest Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents Diagnostic Tests, as available from vendors.

Attributes:

testId - This identifies the test to be executed.

Data Type:String

Privilege:Private

Default Value:

Operations:

6-200 305-CD-029-002

RunTest - This method runs the specified test.
Arguments:char* testId

Associations:

The MsFlTest class has associations with the following classes:
Class: ManagementFramework IsRunBy

6.5.3.12 MsTrap Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

MsTrap represent changes in the state of managed objects (COTS and custom). These

changes may be acceptable changes in state (normal events), or they may represent

unacceptable changes in state (faults) of managed objects. Traps are generated by

Management Agent Services and are received by the ManagementFramework (HPOV

NNM), which determines the appropriate MsFlAction to be executed based on the

configuration information represented by MsFlConfig. Traps for COTS products are

defined by the vendors of the COTS products (such as routers), whereas Traps unique to

ECS (for ECS Applications) are defined in the ECS Application MIB. These include

special Traps such as DiscoveryTraps, StartupTraps and ShutdownTraps. These are

discussed in the section on the MsFlAction class.

Attributes:

agentAddr - This attribute specifies the IP address of the managed object where the trap

originated.

Data Type:String

Privilege:Private

Default Value:

enterpriseId - This attribute specifies the ECS enterprise identification ID. This is

represented in dot notation.

Data Type:Integer

Privilege:Private

Default Value:

genericTrapId - This attribute specifies the generic trap id (0-4 for standard traps, 6 for

enterprise specific traps)

Data Type:Integer

Privilege:Private

Default Value:

6-201 305-CD-029-002

specificTrapId - This attribute specifies the specific Id of the enterprise-specific traps

(discussed in the MsFlAction Class)

Data Type:Integer

Privilege:Private

Default Value:

time - his attribute specifies the time, in seconds, since a reference data in the past at the

managed object when the trap was generated.

Data Type:time

Privilege:Private

Default Value:

varBindList - This attribute specifies a list of the varuable bindings sent with the trap.

Data Type:String

Privilege:Private

Default Value:

Operations:

MsTrap - This is the default constructor for this class.

Arguments:

Return Type:Void

Privilege:Public

~MsTrap - This is the destructor for this class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsTrap class has associations with the following classes:
Class: ManagementFramework Processes

6.5.3.13 SoftwareTrap Class

Parent Class:MsTrap

Public:No

Distributed Object:No

Purpose and Description:

This class represents traps generated by the Managemenet Agent Services for faults events

detected in ECS applications, or faults reported by ECS applications.

6-202 305-CD-029-002

Attributes:

All Attributes inherited from parent class

Operations:

SoftwareTrap - This method represents the constructor of the class.

Arguments:

Return Type:Void

Privilege:Public

~SoftwareTrap - This method represents the destructor of the class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The SoftwareTrap class has associations with the following classes:
None

6.5.4 Fault Management Dynamic Model

6.5.4.1 Fault Notification by an ECS Application

This scenario traces the events associated with the Data Server reporting a fault as a result of
calling another application. As a result of receiving this fault report, a notification is then sent to
the Ingest Server which is dependent on the Data Server for its operations. The scenario is depicted
in Figure 6.5-3.

6.5.4.1.1 Beginning Assumptions

None.

6.5.4.1.2 Interfaces with Other Subsystems and Segments

Management Agent Services

6.5.4.1.3 Stimulus

An ECS application (the Data Server) generates a Fault notification as the result of a call to another
application which ends with a fatal error status.

6-203 305-CD-029-002

Calling Object CalledObject MsAgEvent MsFlFaultAnalysis HPOV MsFlAction EcDAAC M&OStaff EcAgManager

ReportECSProcessFailedTrap

sendnotification

SnmpTrap()

Call()

CTOR()

SetParentId()

LogEvent(start)

Logevent()

LogEvent()

CTOR()

GetMyId()

SetMyId()

GetMyId()

LogEvent(end)

CTOR

ActionRequest()

GetAppList(char* AppName)

Notification()

6-204
305-C

D
-029-002

Figure 6.5-3. Fault Notification by an ECS Application Event Trace

6.5.4.1.4 Participating Classes From the Object Model

CallingObject (An ECS Application - Data Server)

CalledObject (Another ECS Application that the Ingest Server calls)

EcAgEvent

HPOV (HP OpenView Network Node Manager)

MsFlAction

EcDAAC

M&O Staff

EcAgManager

6.5.4.1.5 Beginning System, Segment and Subsystem State(s)

The configuration is set up to execute a specified action based upon the Ingest Server reporting the
specific type of fault used in this scenario. This action locates the Ingest Server and sends it a
notification of the fault since the Ingest Server depends on the well-being of the Data Server.

6.5.4.1.6 Ending State

The M&O Staff are notified via the icons corresponding to the Data Server changing color, and the
Ingest Server is sent a notification of the fault. The state of the object corresponding to the Data
Server has changed to critical as a result of the fault.

6.5.4.1.7 Scenario Description

This description describes the accompanying event trace.

The Data Server (CallingObject) calls another application (CalledObject). The call returns and
reports a fatal error. The Data Server instantiates EcAgEvent, sets the attributes and logs the event
via LogEvent. EcAgEvent logs the event to the MSS History Logfile, and generates a fault
notification via an SNMP trap. HP OpenView, upon receipt of the trap, based on configuration
information established, invokes the appropriate method MsFlAction. This method retrieves the
Application instance (EcAgManager - the managed object proxy of the Data Server) and changes
its state. This causes a notification to be sent to the M&O Staff. The MsFlAction method then
invokes method GetAppList on EcDAAC, which retrieves the list of its dependents. From this list,
it determines which application it needs to send a notification to (Ingest Server in this case),
instantiates a proxy to the Ingest Server application (EcAgManager - a public class exported by the
Management Agent Services), and invokes ActionRequest on the proxy. This method sends the
notification to the Ingest Server application.

6.5.5 Fault Management Structure

Table 6.5-2 lists the components of the Fault Management Application Service.

6-205 305-CD-029-002

Table 6.5-2. Fault Management Components
Component Name COTS/Custom

MsFlManager Custom (C++ code)

HPOV COTS

MsFlConfig Configuration of COTS (HPOV)

MsFlAction Custom (C++ code and scripts)

MsManager C++ code imported from Management Agent Services

EcDAAC External C++ Class category

MsFlTest Vendor-provided diagnostic tests

6.5.5.1 Network Management Framework CSC

Purpose and Description

The Network Management Framework provides the framework for network management . It
provides the integration points for management applications. In order to provide network and
system management solutions using the framework, some amount of customization and
configuration is necessary. This will involve the loading of MIBs, discovering and customizing the
user interface (the visual displays), the association of faults with automated actions, where
necessary.

Mapping to objects implemented by this component

ManagementFramework - HP Openview COTS

MsFlConfig

HP OpenView Network Node Manager

6.5.5.2 System Management Framework CSC

Purpose and Description

The System Management Framework provides the framework for system management . It consist
of Tivoli COTS products: Enterprise Console, Courier, Sentry and application and event adapters.

Courier provides ECS wide software management and distribution capabilities including remote
instillation of software from a central location. Sentry provides performance monitoring of ECS
host and client software. It collects both Tivoli defined and user defined performance metrics and
provides for the setting of thresholds to generate alerts to the management system. The Enterprise
Console consists of a graphical GUI to view and control the ECS enterprise. It performs rules
based fault correlation and response to events received from HP Openview and Sentry.

6.5.5.3 Diagnostic Tests CSC

Purpose and Description

These diagnostic tests, meant for fault isolation and diagnosis will be tests as provided by vendors.

Mapping to objects implemented by this component

MsFlTest

6-206 305-CD-029-002

6.5.5.4 Application Management CSC

Purpose and Description

The Application Management component of real-time configuration management has to do with
the discovery, startup or shutdown of ECS applications.

Mapping to objects implemented by this component

MsFlManager

DiscoverECSApplications - C++ code

StartupECS Applications - C++ code

ShutdownECSApplications - C++ code

6.5.5.5 Automatic Actions CSC

Purpose and Description

Automatic actions are actions that are initiated in response to a well known event. These well
known event include the discovery of an ECS Application, the notification of an application
starting up or shutting down gracefully, the correlation of faults, automatic responses to well
known faults.

Mapping to objects implemented by this component

MsFlAction

ECSAppDiscoveryTrap - C++ code

ECSAppStartupTrap - C++ code

ECSAppShutdownTrap - C++ code

Scripts:

ECSTapeUpTrap

ECSTapeDownTrap

ECSDiskUpTrap

ECSDiskDownTrap

ECSPrinterUpTrap

ECSPrinterDownTrap

ECSProcessMissingTrap

ECSProcessFailedTrap

MsFlFaultCorrelation - COTS (Tivoli)

6.5.5.6 Resource Class Category CSC

Purpose and Description

The Resource Class Category encapsulates the proxy objects that the Management Framework
maintains. This class category provides services such as the status of a processor, or the status of
its associated disks.

6-207 305-CD-029-002

Mapping to objects implemented by this component

EcDAAC

GetCPUList - C++ code

GetDiskList(CPUID) - C++ code

6.5.6 Fault Management Management and Operation

6.5.6.1 System Management Strategy

The Fault Management Application Service is based on HP OpenView NNM, which generates
notifications when it detects partial failures of its components. Components of HP OpenView may
be individually restarted. In the case of a total failure, it may be restarted. All error messages are
logged to the local log file. In the case of a hardware failure of the MSS server, the CSS server will
provide a backup platform to run MSS management software.

6.5.6.2 Operator Interfaces

The Operator Interface to Fault Management is the graphical user interface provided by HP
OpenView Network Node Manager.

6.5.6.3 Reports

The following predefined Fault Management reports will be provided:

FDDI Interface utilization report - graphical depiction of the utilization of an FDDI interface on
operator-selected interface.

Ethernet Errors report -- graphical depiction of real-time ethernet errors on operator-selected
node(s).

SNMP Protocol Errors report - graphical depiction of real-time SNMP errors on operator-selected
node(s).

SNMP Authentication Failures report - tabular list of management systems that have caused an
SNMP authentication failure on the selected node(s).

SNMP Events Log - tabular listing of all SNMP events reported to HP OpenView for the selected
node(s).

Site Host Errors report - tabular listing of the count of various host errors over an operator-specified
period of time for each host at the site.

EMC Host Errors report - tabular listing of the count of various host errors over an operator
specified period of time for each site.

Other fault management statistics will be reportable via ad hoc reports provided by HP OpenView
and the report generation capability associated with the management RDBMS.

Further information on fault management reports is available in the Release B Overview Design
Specification (305-CD-020-002).

6-208 305-CD-029-002

6.6 Performance Management

6.6.1 Performance Management Overview

The Performance Management Application Service provides the capability to continuously gather
statistical and historical data on the operational states of applications, operating system resources
and network components, to analyze the data collected by comparing with established criteria,
adjust measurement criteria or initiate other corrective actions as necessary in order to ensure an
optimal utilization of resources. The service allows for the benchmarking and trends analysis of
network component performance, in addition to collecting performance data on scientific
algorithms. The Performance Management Application Service has two instances: one at each of
the DAACs and one at the SMC. The site Performance Management Application Service collects
and processes performance data local to the site.

Site performance management data is periodically summarized and sent to the SMC for analysis
by the SMC Performance Management Application. The SMC Performance Management
Application Service, which has capabilities similar to those of the site Performance Application
Services, operates on performance data collected system-wide by the various site Performance
Management Application Services in order to evaluate system-level performance and system-wide
trends. In addition, the SMC Performance Management Application Service is also capable of
connecting directly to each of the DAACs as required to monitor the performance of site elements.

For Release B, the Performance Management Application Service will consist mainly of two
COTS applications, HP OpenView and Tivoli/EC . Table 6.6-1 provides an indication of
responsibility between HP OpenView and Tivoli for providing performance management of the
various ECS managed objects.

Table 6.6-1. Performance Manager by Managed Object Table
Managed Object Performance Manager

Hosts HP OpenView

Routers HP OpenView

Hubs HP OpenView

Gateways HP OpenView

FDDI links HP OpenView

Ethernet links HP OpenView

ECS Applications Tivoli & HP Openview

Operating systems Tivoli

File systems Tivoli

HP OpenView provides operators to specify, for each managed object, the following information:

•	 Performance attributes to be collected. Management information bases (MIBs) are used to
define attributes that can be collected from various managed objects. Each performance
attribute that can be measured has an associated object identifier (oid) specified in a MIB.
HP OpenView collects data for each oid that has been specified for a particular managed
object.

6-209 305-CD-029-002

•	 Frequency of performance attribute data collection. This value can be set differently for
each attribute associated with a managed object.

•	 Threshold(s) which indicate degraded performance condition(s) (one or more can be set for
each oid on each managed object). For each threshold set, a corresponding rearm value can
also be set. Once the threshold is exceeded, the performance attribute must then fall below
the rearm value before the performance degradation is cleared. This prevents the generation
of multiple degradation alerts in the case where the performance attribute value is
fluctuating around the threshold value.

•	 Performance attributes to be logged. HP OpenView logs only that data specified by the
operator. For each oid on each managed object, performance management can take one of
three forms:

1. attribute not monitored

2. attribute monitored but not logged

3. attribute monitored and logged

HP OpenView can monitor any performance management attributes that are included in MIBs
supported by ECS management agents. The following tables, Table 6.6-2 through 6.6-4, provide a
representative sample of the performance attributes that are monitored using HP OpenView for
different types of managed objects. These attributes are not inclusive. The operator always has the
capability to collect information on additional supported attributes or to stop collecting information
on listed attributes.

Table 6.6-2. Host Performance Metrics Table
Attribute type Attribute Description

Interfaces Status of each interface

No. of octets received on each interface

No. of octets sent out on each interface

SNMP No. of SNMP messages received

No. of SNMP messages sent

Devices Status of each host device (unknown, running, warning, testing, or down)

Processor Avg. percentage of time over the last minute that the processor was not idle

SW Run No. of total centi-seconds of CPU allocated to each running process

Total amount of real system memory allocated to each running process

6-210 305-CD-029-002

Table 6.6-3. Router Performance Metrics Table
Attribute type Attribute Description

Interfaces Status of each interface

No. of octets received on each interface

No. of octets sent out on each interface

SNMP No. of SNMP messages received

No. of SNMP messages sent

Local system group CPU busy percentage in the last 5 second period

Average CPU busy percentage over the last minute

Local interface group Five minute average of input bits per second on each interface

Five minute average of output bits per second on each interface

Table 6.6-4. Hub Performance Metrics Table
Attribute type Attribute Description

Interfaces Status of each interface

No. of octets received on each interface

No. of octets sent out on each interface

SNMP No. of SNMP messages received

No. of SNMP messages sent

The COTS Performance Application, Tivoli, provides similar monitoring capabilities for
applications and operating systems. The following tables, Table 6.6-5 through 6.6-9, provide a
representative sample of the performance attributes that will be monitored using the Tivoli COTS
product. These attributes are not inclusive. Tivoli allows the collection of user defined metrics
returned by user provided scripts and programs. The operator will have the capability to collect
information on additional supported attributes or to stop collecting information on listed attributes.

6-211 305-CD-029-002

Table 6.6-5. Global System Performance Metrics Table (1 of 2)
Attribute type Attribute Description

Summary metrics CPU use during interval (percentage of total and seconds

Number and rate of physical disk I/Os

Maximum percent full of all disk filesets

CPU metrics System CPU use during interval (percent of total and seconds)

User CPU use during interval (percent of total and seconds)

CPU idle time during interval (percent of total and seconds)

Rate of system procedure calls during interval

Disk metrics Number of disk drives configured on the system

Average utilization of busiest disk during interval

Number and rate of physical disk reads during interval

Number and rate of physical disk writes during interval

Number and rate of physical disk transfers during interval

Number and rate of disk reads by file system during interval

Number and rate of disk writes by file system during interval

Number and rate of disk reads for memory management during interval

Number and rate of disk writes for memory management during interval

Networking Number of configured LAN interfaces

Number and rate of network file system requests during interval

Rate of LAN errors per minute

Rate of LAN collisions per minute

Memory use Main memory use (percent of total)

Swap space use on disk (percentage of total)

Number and rate memory page faults during interval

Number of process swaps during interval

Percent of virtual memory currently in active use

Process queue depths (load
factors)

Number of processes in run queue during interval

Number of processes waiting for disk during interval

Number of processes waiting for memory during interval

Number of processes currently in sleep state during interval

Number of processes waiting for some other reason during interval

User/process metrics Number of user sessions during interval

Number of processes alive during interval

6-212 305-CD-029-002

Table 6.6-5. Global System Performance Metrics Table (2 of 2)
Attribute type Attribute Description

Number of processes active during interval

Number of processes started during interval

Number of processes that completed during interval

Average run time of completing process during interval (in secs)

LAN metrics (per LAN intfc) Number and rate of arriving LAN packets during interval

Number and rate of outbound LAN packets during interval

Number and rate of LAN errors during interval

Number and rate of LAN collisions during interval

Individual disk drive metrics Number and rate of file system reads during interval

Number and rate of file system writes during interval

Disk utilization during interval (percent of total)

Table 6.6-6. Application Performance Metrics Table
Attribute type Attribute Description

Summary metrics Application's CPU use during interval (percent of total and in secs)

Number and rate of physical disk transfers during interval

Process count metrics Average number of processes in application

Average number of active processes in application

Number of application processes that completed during interval

Run time of completing application processes (in secs)

Average process priority in application

Standard deviation of process priorities

CPU metrics CPU use for user processes during interval (percent of total and secs)

CPU use for system processing (percent of total and secs)

Disk metrics Number and rate of logical disk reads during interval

Number and rate of logical disk writes during interval

Number and rate of physical disk reads during interval

Number and rate of physical disk writes during interval

Memory metrics Main memory use (percent of total)

Swap space use on disk (percent of total)

6-213 305-CD-029-002

Table 6.6-7. Process Performance Metrics Table
Attribute type Attribute Description

Process identification metrics Process identification number

Application number

Program name

Logon user name

Logon device name or number

Parent and group identification numbers

Execution priority/scheduling queue

Last reason for stopping execution

Summary metrics CPU use during interval (percent of total and secs)

Number and rate of physical disk transfers during
interval

Total time process ran

CPU metrics CPU use for system processing (percent of total and
secs)

CPU use for user processing (percent of total and
secs)

Disk metrics Number and rate of logical disk reads during interval

Number and rate of logical disk writes during interval

Memory metrics Resident set size (Kbytes)

Size of test+data+stack memory (Kbytes)

Number of page faults to memory

Number of page faults to disk

Overall process lifetime metrics Number and rate of logical disk transfers by process

Number of terminal transactions by process

Average terminal think time overall (in secs)

Average terminal response to prompt time overall (in
secs)

Number of user transactions by process

Average user think time overall (in secs)

6-214 305-CD-029-002

Table 6.6-8. Disk Performance Metrics Table
Attribute type Attribute Description

Disk metrics Number of disk devices configured

Disk utilization during interval

Rate and number of file system reads

Rate and number of file system writes

Table 6.6-9. Disk Performance Metrics Table
Attribute type Attribute Description

System configuration metrics Operating system version

Number of processors in the system

Number of disk devices and their device IDs

Number of LAN devices

Main memory size (total and available to users)

Swapping space allocated

In addition, the performance management application service must also monitor ECS-specific
metrics for ECS applications. This information will be collected by management agent services
and stored in a history log. The operator will be given an interface to the management agent for
performance management reasons to set polling intervals and application thresholds. The operator
can access this ECS-specific data by browsing the logs or by generating reports from the
management RDBMS. A sample of the ECS-specific performance metrics is provided in Table
6.6-10. These attributes are not inclusive. The operator will have the capability to collect
information on additional supported attributes or to stop collecting information on listed attributes.

Table 6.6-10. ECS-Specific Performance Metrics Table
Attribute Type Attribute Description

Processing performance CPU utilization for each PGE

memory utilization for each PGE

disk space utilization for each PGE

Storage management performance total staged data volume (in GB)

6.6.2 Performance Management Context

The performance management context diagram is shown in Figure 6.6-1. The Performance
Management Application Service has interfaces with the following other services:

•	 Management Agent Services - The Performance Management Application Service has two
basic interfaces with the Management Agent Services. The first allows the performance
management application to query the management agent for performance data on a

6-215 305-CD-029-002

managed object and receive the data from the agent. The second interface allows the agent
to monitor and control the COTS Performance Application. This allows the Fault
Management Application Service to monitor the COTS Performance Application and send
it startup and shutdown commands.

•	 Management RDBMS - The Performance Management Application Service has an
interface with the management RDBMS to generate performance reports.

•	 External Systems - The Performance Management Application Service has an interface
with external systems to exchange performance data. This data will be sent as processed
data via an e-mail interface.

•	 Fault Management Application Service - The Performance Management Application
Service has an interface with the Fault Management Application Service to send event
notifications whenever thresholds are exceeded.

•	 SMC Performance Management Application Service - The site Performance Management
Application Service has an interface with the SMC Performance Management Application
service to provide site performance information in several ways. First, the site will
periodically generate summary reports on a prearranged basis. These reports will be in the
form of database records that can be combined with other site reports to form an ECS-wide
summary of performance. Second, the SMC can send a request for a site performance data.
This can be in the form of a log file or a report. If it is a log file, the site will simply send a
copy of the requested log file. If it is a report, the site will then generate the report and send
it to the SMC, again in database format. Third, the SMC can remotely log onto the site HP
OpenView application to gather specific real-time performance information.

6.6.3 Performance Management Object Model

The performance management object model is shown in Figure 6.6-2.

6.6.3.1 EcAgProxy Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This object class is primarily for COTS' manageability. It includes the MSS

instrumentation class library to enable the manageability of the COTS product. The front

end of this object is the MSS instrumentation code. The back-end of it is the interface to the

COTS. It is unique to every COTS. In security management, the logs of COTS are

monitored by this object. If an security event occurs, this object has to detect the incident

and send out an event notification to the MsAgSubagent.

Attributes:

modeB - This attribute contains the mode in which the application is executing under. It
identifies functional activity(operational, testing, training).

6-216 305-CD-029-002

Performance Data

Site
Performance Management

Application Service

This System

Threshold exceeded notifications
(via HP OpenView & Tivoli)

(via HP OpenView & Tivoli)
Management Requests

Polls for Performance data
Event Data

Management Responses

Request for Performance Data

Performance Data

Performance Data
(via e-mail)

Performance Data
(via e-mail)

Management Agent Services

Fault Management
Application Service

Management Database

6-217
305-C

D
-029-002

Performance Data Requests
(via e-mail)

Site HP OpenView Login SMC Performance
Management

Application ServiceSummary Reports

Log Files

Site HP OpenView Access

External Systems

Figure 6.6-1. Performance Management Context Diagram

custom
custom

MsPmManager

MsPmTest

RunTest(testName)

MsPmConfig

GetTime(attributeObjectId)
GetThreshold(attributeObjectId)

MsPmList

GetNext()

ManagementFramework

configured COTS

configured COTS

COTS(HPOV)

GenerateReport(reportName, startTime, endTime)

MsPmSMC

SendSummaryData(filename)

SetTime(attributeObjectId)
SetThreshold(attributeObjectId)

attributeObjectID
attributePollingInterval
attributeThreshold

custom

EnterpriseFramework

COTS

COTS

MsPmEvent

oid

configured COTS

MO

threshold

MsPmProxy

EcAgProxy

custom

custom

StartupCb()
ShutdownCb()

mode

modeB

MsAgSubAgent

[MAS]

pEventMgr
pMonitor
pTblMgr
pSugAgentCfg
pDepGate
pPortMonitor
pDiscoverer
pBuffer
pThread

MsAgSubAgent()
~MsAgSubAgent()
SchdThreadExec(pthread_addr_t pThread)

custom

MsPmExtSys

SendMail(destination, filename)

+

+
+

+

Offpage

++

+
+

- : String
- : Time
- : Integer

Offpage

- : String

- : String

- : Integer

[DISTR OBJ]

[Public]

+
+

[DISTR OBJ]

- : MsAgMonitor*
- : MsAgTblMgr*

- : MsAgPortMonitor*
- : MsAgDiscoverer*

+
+
- : static pthread_addr_t

+

is run by

is used by

generates

is used by

uses

uses

generates

manages

set thresholds and polling intervals

uses

[Public]

Figure 6.6-2. Performance Management Object Model

6-218 305-CD-029-002

Operations:

None

Associations:

The EcAgProxy class has associations with the following classes:
None

6.6.3.2 EnterpriseFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

EnterpriseFramework is the Tivoli COTS product the performs enterprise wide services:

System Administraton (Tivoli/Admin), Software distribution (Tivoli/Courier),

performance monitoring (Tivoli/Sentry) and fault correlation (Tivoli/Enterprise Console).

The framework also acts as the integrated desktop for Maintenance and Operations,

integrating other administrative functions such as Sybase database administration, system

backup/restore, and DCE Cell administration.

Attributes:

None

Operations:

None

Associations:

The EnterpriseFramework class has associations with the following classes:
Class: MsPmEvent generates
Class: MsPmProxy manages
Class: MsPmManager uses

6.6.3.3 ManagementFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is HP OpenView Network Node Manager, a COTS product. This product

6-219 305-CD-029-002

provides the management framework with the underlying management services for the
management of SNMP-based network devices. It also provides the necessary integration
points and services for the integration of management applications. Since this class is all
COTS, it will not be described in detail here. The reader is referred to the documentation
set of HP OpenView Network Node Manager for further details on the product.

Attributes:

None

Operations:

None

Associations:

The ManagementFramework class has associations with the following classes:
Class: MsPmEvent generates
Class: MsPmTest isrunby
Class: MsPmConfig isusedby
Class: MsAgSubAgent setthresholdsandpollingintervals
Class: MsPmManager uses

6.6.3.4 MsAgSubAgent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This managed object class supports SNMP MIB extensions. It receives requests from the

master agent. Based on Get or Set requests, it performs the retrieval or set functions onto

resource or resource managers using available API. This object will instantiate another

object MsAgMonitor to perform local polling on resources on the host.

Attributes:

pBuffer - This attribute represents a pointer to a StaticBuffer.

pDepGate - This attribute represents a pointer to a deputy gate.

pDiscoverer - This attribute represents a pointer to a discoverer.

Data Type:MsAgDiscoverer*

Privilege:Private

6-220 305-CD-029-002

Default Value:

pEventMgr - This attribute represents a pointer to an event manager.

pMonitor - This attribute represents a pointer to a monitor.

Data Type:MsAgMonitor*

Privilege:Private

Default Value:

pPortMonitor - This attribute represents a pointer to a port monitor.

Data Type:MsAgPortMonitor*

Privilege:Private

Default Value:

pSugAgentCfg - This attribute represents a pointer to the subagent configuration.

pTblMgr - This attribute represents a pointer to a table manager.

Data Type:MsAgTblMgr*

Privilege:Private

Default Value:

pThread - This attribute represents a pointer to a thread.

Operations:

MsAgSubAgent - This method represents the constructor of the object.

Arguments:

Return Type:Void

Privilege:Public

SchdThreadExec - This method spawns a DCE thread.

Arguments:pthread_addr_t pThread

Return Type:static pthread_addr_t

Privilege:Private

~MsAgSubAgent - This method represents the destructor of the object.

Arguments:

Return Type:Void

Privilege:Public

Associations:

6-221 305-CD-029-002

The MsAgSubAgent class has associations with the following classes:
Class: MsAgSubAgent
Class: ManagementFramework setthresholdsandpollingintervals

6.6.3.5 MsPmConfig Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides configuration information to the Management Framework. It is used by

the the ManagementFramework to store thresholds and performance measurement

intervals for performance metrics. This class is implemented by configuring the

ManagementFramework COTS package.

Attributes:

MO - This is a string that identifies the managed object.

Data Type:String

Privilege:Private

Default Value:

Operations:

GetThreshold - This method retrieves the threshold value(s) that have been set for the

specified attribute for this managed object. This method is implemented by HP OpenView.

Arguments:attributeObjectId

Return Type:Void

Privilege:Public

GetTime - This method retrieves the time interval at which the specified attribute is to be

polled for this managed object. This method is provided by HP OpenView.

Arguments:attributeObjectId

Return Type:Void

Privilege:Public

SetThreshold - This method sets the threshold value(s) for the specified attribute of this

managed object. Whenever the ManagementFramework retrieves managed object attribute

values, it will compare those values against these thresholds to determine whether a

performance degradation has occurred. This method is implemented by HP OpenView to

allow operator input of threshold value(s).

Arguments:attributeObjectId

Return Type:Void

Privilege:Public

6-222 305-CD-029-002

SetTime - This method sets the time interval at which the ManagementFramework will poll

this managed object to obtain the value of the specified attribute. The method is provided

by HP OpenView to allow the operator to set or modify the time interval.

Arguments:attributeObjectId

Return Type:Void

Privilege:Public

Associations:

The MsPmConfig class has associations with the following classes:
Class: ManagementFramework isusedby

6.6.3.6 MsPmEvent Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class defines the event that is generated by the ManagementFramework or the

MsPmApplManager whenever a measured attribute value exceeds a configured threshold.

The generated event is forwarded to the fault management element of the

ManagementFramework. This class is implemented by configuring the

ManagementFramework and MsPmApplManager COTS packages.

Attributes:

mode - Defines the mode of the process that caused the event: Operational, test, simulation

oid - This attribute specifies the object identification of the attribute for which a threshold

value has been exceeded.

Data Type:String

Privilege:Private

Default Value:

threshold - This attribute specifies an integer representing the threshold level (severity)

that has been exceeded.

Data Type:Integer

Privilege:Private

Default Value:

Operations:

6-223 305-CD-029-002

None

Associations:

The MsPmEvent class has associations with the following classes:
Class: EnterpriseFramework generates
Class: ManagementFramework generates

6.6.3.7 MsPmExtSys Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides the interface for the MsPmManager to send performance management

information, reports, and notifications to external systems via e-mail.

Attributes:

None

Operations:

SendMail - This operation generates an electronic mail message to send the performance

information stored in filename to the specified destination.

Arguments:destination, filename

Return Type:Void

Privilege:Public

Associations:

The MsPmExtSys class has associations with the following classes:
Class: MsPmManager uses

6.6.3.8 MsPmList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class stores configuration information. It is implemented by configuring the

ManagementFramework COTS package.

6-224 305-CD-029-002

Attributes:

attributeObjectID - This represents a specific performance parameter as a sequence of

integers to correspond to the location ofthe parameter in the MIB tree structure.

Data Type:String

Privilege:Private

Default Value:

attributePollingInterval - This attribute specifies the time interval with which the

ManagementFramework should poll the managed object for this attribute.

Data Type:Time

Privilege:Private

Default Value:

attributeThreshold - This attribute specifies the value which, if exceeded, should result in

an alert being generated.

Data Type:Integer

Privilege:Private

Default Value:

Operations:

GetNext - This operation gets the next attribute in the list for the same MO.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsPmList class has associations with the following classes:
MsPmConfig (Aggregation)

6.6.3.9 MsPmManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class provides the capability for generating and sending performance management

reports to external systems and the SMC. This class is implemented via scripts.

Attributes:

6-225 305-CD-029-002

None

Operations:

GenerateReport - This method generates the specified predefined report from the

management database from data collected on the time periods indicated.

Arguments:reportName, startTime, endTime

Return Type:Void

Privilege:Public

Associations:

The MsPmManager class has associations with the following classes:
Class: MsPmSMC isusedby
Class: EnterpriseFramework uses
Class: ManagementFramework uses
Class: MsPmExtSys uses

6.6.3.10 MsPmProxy Class

Parent Class:EcAgProxy

Public:No

Distributed Object:No

Purpose and Description:

This class is a specialization of the EcAgProxy class. It provides the capability for the

monitoring and management of MsPmApplManager. This class is implemented by

customizing C++ code developed under management agent services.

Attributes:

All Attributes inherited from parent class

Operations:

ShutdownCb - This method shuts down the performance management COTS product by

executing a vendor-provided shutdown script. It is a specialization of the class provided by

management agent services.

Arguments:

Return Type:Void

Privilege:Public

StartupCb - This method starts the performance management COTS product using a

vendor-provided script. It is a specialization of the class provided by management agent

6-226 305-CD-029-002

services.
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsPmProxy class has associations with the following classes:
Class: EnterpriseFramework manages

6.6.3.11 MsPmSMC Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class sends summary performance data to the SMC via e-mail. This data is in the form

of a standard summary report generated by the MsPmManager from information logged in

the management database.

Attributes:

None

Operations:

SendSummaryData - This operation sends the specified file to the SMC.

Arguments:filename

Return Type:Void

Privilege:Public

Associations:

The MsPmSMC class has associations with the following classes:
Class: MsPmManager isusedby

6.6.3.12 MsPmTest Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the tests that may be run to gather information on the performance of

managed objects. These tests are COTS products. This class is implemented by the

6-227 305-CD-029-002

ManagementFramework COTS package.

Attributes:

None

Operations:

RunTest - This method runs the specified performance test. For Release A, these tests are

as provided by COTS vendors.

Arguments:testName

Return Type:Void

Privilege:Public

Associations:

The MsPmTest class has associations with the following classes:
Class: ManagementFramework isrunby

6.6.4 Performance Management Dynamic Model

6.6.4.1 Degradation of Performance Alert

The degradation of performance alert scenario is depicted in Figure 6.6-3.

MsPmList MsPmConfig ManagementFramework MsAgAgent

GetThreshold

GetConfig

GetTime

Get

GetResponse

SendAlert

Figure 6.6-3. Degradation of Performance Alert

6-228 305-CD-029-002

6.6.4.1.1 Beginning Assumptions

Performance thresholds have been stored for system managed objects.

6.6.4.1.2 Interfaces with Other Subsystems and Segments

An event is reported to the fault management element of the ManagementFramework to signal that
the measured attribute has exceeded the set threshold.

6.6.4.1.3 Stimulus

A measured managed object attribute exceeds the set threshold.

6.6.4.1.4 Participating Classes From the Object Model

ManagementFramework

MsPmConfig

MsPmList

6.6.4.1.5 Beginning System, Segment and Subsystem State(s)

The performance management system is in the normal operational state.

6.6.4.1.6 Ending State

A performance degradation event is sent to the fault management element of the
ManagementFramework and the performance management system is in the normal operational
state.

6.6.4.1.7 Scenario Description

The ManagementFramework sends a GetConfig command to MsPmConfig for a specified
managed object. For the attributes which are to be measured for the specified managed object,
MsPmConfig sends commands to MsPmList to retrieve the time intervals at which the specified
managed object is to be polled for the performance attributes, and the threshold values for which,
if the values are exceeded, the ManagementFramework shall send an alert to the fault management
component of the ManagementFramework. The time interval and threshold information is then
sent to the ManagementFramework. When the time interval has elapsed, the
ManagementFramework sends a Get command to the management agent responsible for managing
the managed object. The Agent sends an AgentRequestResponse to the MsManager_S to extract
the data from the managed object. The MsManager_S provides the Agent with the attribute value
in a GetResponse, which the Agent then forwards to the ManagementFramework. The
ManagementFramework compares the attribute value against the threshold value that was obtained
from MsPmConfig. The ManagementFramework identifies that a threshold value has been
exceeded, the constructs an alert to be sent to the fault management element of the
ManagementFramework, sets the appropriate parameters to identify the cause of the fault
(managed object name, attributeObjectId, measured attribute value), and sends the fault to the
Fault management element.

6-229 305-CD-029-002

6.6.4.2 Providing Performance Summary to SMC

In this scenario, the performance manager generates a daily summary of the site performance and
forwards the summary to the SMC and to an external user. The providing performance summary
to SMC scenario is shown in Figure 6.6-4.

MsPmManager Management RDBMS MsPmSMC MsPmExtSys

GenerateReport

SendSummaryData

SendMail

Figure 6.6-4. Providing Performance Summary to SMC

6.6.4.2.1 Beginning Assumptions

None.

6.6.4.2.2 Interfaces with Other Subsystems and Segments

Interface with management data access service to retrieve performance data. Interface with the
SMC performance management component. Interface with an external system.

6.6.4.2.3 Stimulus

A daily site performance report is required to be delivered to the SMC and to an external system.

6.6.4.2.4 Participating Classes From the Object Model

MsPmExtSys

MsPmManager

MsPmSMC

6.6.4.2.5 Beginning System, Segment and Subsystem State(s)

The system is operating in the normal operational mode.

6.6.4.2.6 Ending State

The system is operating in the normal operational mode with the performance data sent to the SMC
and the external system.

6.6.4.2.7 Scenario Description

The MsPmManager contains a script that uses MDA to create a standard daily report. A
GenerateReport command is issued from the MsPmManager, specifying the name of the standard
daily report script. The script extracts the specified data from MDA and arranges it in the report

6-230 305-CD-029-002

format. The report can then be saved to a file by the MsPmManager. The MsPmManager then
issues a SendSummaryData command, specifying the name of the recently saved report file,
causing the summary data report to be sent electronically to the SMC. The MsPmManager then
issues a SendMail command, specifying the electronic address of the external system and the file
name of the recently saved report file. This causes the summary data report to be sent to the external
system.

6.6.5 Performance Management Structure

Table 6.6-11 identifies the components of the Performance Management Application Service.

Table 6.6-11. Performance Management Components
Element Implementation

(COTS/Custom)

ManagementFramework COTS

MsPmApplManager COTS

MsPmConfig Configuration

MsPmEvent Configuration

MsPmExtSys Script

MsPmList Configuration

MsPmManager Script

MsPmSMC Custom

MsPmTest COTS

MsPmCallbacks Custom

MsPmProxy Custom

6.6.5.1 Performance Manager CSC

Purpose and Description

This CSC provides the basis for Enterprise Management (network and systems management). It
provides the integration points for management applications. In order to provide network and
system management solutions using the framework, some amount of customization and
configuration is necessary. This will involve the loading of MIBs, discovering and customizing the
user interface (the visual displays), the setting of thresholds and polling intervals for managed
object attributes, where necessary.

Mapping to objects implemented by this component

ManagementFramework

MsPmApplManager

MsPmConfig

MsPmEvent

MsPmList

6-231 305-CD-029-002

6.6.5.2 Report Generation and Distribution CSC

Purpose and Description

The application performance manager provides the performance data gathering and analysis
functions.

Mapping to objects implemented by this component

ManagementFramework

MsPmExtSys

SendMail

MsPmManager

GenerateReport - scripts

GenerateAdHocReport

MsPmSMC

SendSummaryData

6.6.5.3 Performance Test CSC

Purpose and Description

The Test CSC provides the capability for benchmark testing of ECS managed objects. Tests
implemented in Release A will be as provided by COTS.

Mapping to objects implemented by this component

ManagementFramework

MsPmTest

6.6.5.4 Performance Management Proxy CSC

Purpose and Description

This CSC provides the interface for the management of the MsPmApplManager.

Mapping to objects implemented by this component

MsPmCallBacks

MsPmProxy

Candidate Products

Custom - C++ code

6.6.6 Performance Management Management and Operation

6.6.6.1 System Management Strategy

The MsPmApplManager utilizes the MSS Management Agent Services for its management. The
class MsPmProxy provides for the startup, shutdown, and monitoring of MsPmApplManager from
a management application (Fault Management Service).

6-232 305-CD-029-002

Since the ManagementFramework Performance Management service is integrated with the Fault
Management service under HP OpenView, there will be no management service to receive an
event message if the performance management service fails. Therefore, the
ManagementFramework will log all reportable detected errors to a file for post processing.

6.6.6.2 Operator Interfaces

All operator interfaces will be through HP OpenView or through a COTS performance
management package.

6.6.6.3 Reports

The following predefined performance management reports are available:

Interface Traffic Statistics report -- graphical representation of packet statistics (in real time) for
operator-specified node(s)

SNMP Traffic report -- graphical representation of incoming and outgoing SNMP packets (in real
time) for operator-specified node(s).

SNMP Operations report -- graphical representation (in real time) of the number of SNMP
operations requested of and performed by the SNMP agent on the selected node(s).

Site Host Resource Utilization report -- tabular listing of statistics (minimum, average, and
maximum) for various host performance metrics on each host at the site.

EMC Host Resource Utilization report -- tabular listing of statistics (minimum, average, and
maximum) for various host performance metrics on each host at each specified site

Disk Space report -- Text-based report that lists the available file system space on the operator
specified node.

Additional performance reports will be provided on an ad hoc basis.

Further information on performance management reports is available in the Release A Overview
Design Specification (305-CD-004-001).

6.7 Physical Configuration Management Service

6.7.1 Physical Configuration Management Service Overview

The Physical Configuration Management Service (PCMS) provides the capability to track,
manage, and control all the physical elements in the network. It integrates graphics with data to
create a complete electronic model of the physical infrastructure of the network. It provides tools
to locate physical proximity of down nodes, place newly discovered nodes, and manage circuit
changes. It supports a variety of network administration applications including inventory, billing,
and troubleshooting. It has mechanisms to track everything from maintenance data, network
protocol data to software registration. In addition, it provides integration support to several Trouble
Ticket applications.

The Physical Configuration Management Service is provided by the COTS package
MountainView by Accugraph. The MountainView package is responsible for transforming the
logical network management environment into a physical one. It has a graphics module to create
new drawings or to import existing facility drawings to set up a physical layout of the network. It

6-233 305-CD-029-002

has a database module that can link to a Structured Query Language (SQL) relational database to
perform advanced graphical database functions. The database can be used to associate non
graphical data with individual graphical elements in the network drawings. For example, a
distressed device can be located in the database and the associated drawing automatically loaded.
Once loaded, the device will appear on the physical map with its current status. The MountainView
package is capable of attaching symbols in the drawings with the database. Once the attachment is
created, changes made to the drawings will be updated to the database by executing a drawing-to
database update function. The reverse is also true.

The MountainView package has a standard link definition to the SNMP MIB standard. This link
provides direct population of physical network component information into the database. The
acquisition of network component data can be accomplished in two general manners. The first
involves application extensions that link the MountainView package directly into the logical
network management platform. This allows dynamic network data to be loaded into the database
automatically. The second is through the MountainView user interface. This allows the upload of
information on request by executing a command function. This is useful in the area of problem
resolution by requesting information on a troubled device.

6.7.2 Physical Configuration Management Service Context

The physical configuration management service context diagram is shown in Figure 6.7-1.

Management Agent
Services

Physical Configuration
Management Service

This System

events management
commands

Figure 6.7-1. Physical Configuration Management Service Context Diagram

6-234 305-CD-029-002

6.7.3 Physical Configuration Management Service Object Model

The Physical Configuration Management Object Model, Figure 6.7-2, indicates the classes in the
Physical Configuration Management Service, the associations among them, their attributes and
their operations. The classes central to the service are the PhysicalConfigurationManager,
NetworkManager, and MsPcProxy.

[DISTR OBJ]Offpage

MsPcProxy

ShutdownCB()
StartupCB()

EcAgProxy

MonitorLog()
MsPcProxy()
~MsPcProxy()

+
+

[Public]

+
+
+

manages

PhysicalConfigurationManager

RscID
RscLocation
RscType
RscName
RscModel
RscPurchaseDate
RscInstallationDate
RscProtocol
RscManufacturer
RscSerialNumber
RscStatus

COTS

- : Integer
- : String
- : String
- : String
- : String
- : Date
- : Date
- : String
- : String
- : String
- : String

produces

NetworkManager

COTSOffpage

accesses

Report

COTSOffpage

Figure 6.7-2. Physical Configuration Management Service Object Model

6-235 305-CD-029-002

6.7.3.1 EcAgProxy Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This object class is primarily for COTS' manageability. It includes the MSS

instrumentation class library to enable the manageability of the COTS product. The front

end of this object is the MSS instrumentation code. The back-end of it is the interface to the

COTS. It is unique to every COTS. In security management, the logs of COTS are

monitored by this object. If an security event occurs, this object has to detect the incident

and send out an event notification to the MsAgSubagent.

Attributes:

None

Operations:

None

Associations:

The EcAgProxy class has associations with the following classes:
None

6.7.3.2 MsPcProxy Class

Parent Class:EcAgProxy

Public:No

Distributed Object:No

Purpose and Description:

The Physical Configuration Proxy Agent class provides the interface to the Management

Agent Services. It allows the Physical Configuration Manager software to be remotely

monitored and managed.

Attributes:

All Attributes inherited from parent class

Operations:

6-236 305-CD-029-002

MonitorLog - This monitors the log file for errors and sends approppriate information to

the MSS event page and event log file. This is the mechanism employed by the Physical

Configuration Manager Services for managing errors.

Arguments:

Return Type:Void

Privilege:Public

MsPcProxy - This method represents the constructor for the object.

Arguments:

Return Type:Void

Privilege:Public

ShutdownCB - This method initiates the shutdown of the Physical Configuration Manager

software.

Arguments:

Return Type:Void

Privilege:Public

StartupCB - This method initiates the startup of the Physical Configuration Manager

software.

Arguments:

Return Type:Void

Privilege:Public

~MsPcProxy - This method represents the destructor for the object.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsPcProxy class has associations with the following classes:
Class: PhysicalConfigurationManager manages

6.7.3.3 NetworkManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The NetworkManager class is responsible for the logical management of the network. The

Physical Configuration Manager has application extensions to read network component

information directly from the Network Manager class and load it into the database, or a

command can be executed at the request of the user to extract the information. This allows

6-237 305-CD-029-002

dynamic network data to be acquired and processed.

Attributes:

None

Operations:

None

Associations:

The NetworkManager class has associations with the following classes:
Class: PhysicalConfigurationManager accesses

6.7.3.4 PhysicalConfigurationManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The Physical Configuration Manager class is responsible for transforming logical network

management into a physical one. It provides a variety of tools and mechanisms to collect,

maintain, and control information concerning the physical components of the network.

Attributes:

RscID - the unique ID assigned to each resource

Data Type:Integer

Privilege:Private

Default Value:

RscInstallationDate - the installation date of the resource

Data Type:Date

Privilege:Private

Default Value:

RscLocation - the location of the resource

Data Type:String

Privilege:Private

Default Value:

RscManufacturer - the manufacturer of the resource

6-238 305-CD-029-002

Data Type:String

Privilege:Private

Default Value:

RscModel - the model of the resource

Data Type:String

Privilege:Private

Default Value:

RscName - the name of the resource

Data Type:String

Privilege:Private

Default Value:

RscProtocol - the protocol of the resource

Data Type:String

Privilege:Private

Default Value:

RscPurchaseDate - the purchase date of the resource

Data Type:Date

Privilege:Private

Default Value:

RscSerialNumber - the serial number of the resource

Data Type:String

Privilege:Private

Default Value:

RscStatus - the status of the resource. This will be either be up, down, marginal, managed

or unmanaged

Data Type:String

Privilege:Private

Default Value:

RscType - the type of the resource

Data Type:String

Privilege:Private

Default Value:

Operations:

None

6-239 305-CD-029-002

Associations:

The PhysicalConfigurationManager class has associations with the following classes:
Class: NetworkManager accesses
Class: MsPcProxy manages
Class: Report produces

6.7.3.5 Report Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

To format and produce a variety of ad-hoc and canned reports.

Attributes:

None

Operations:

None

Associations:

The Report class has associations with the following classes:
Class: PhysicalConfigurationManager produces

6.7.4 Physical Configuration Management Service Dynamic Model

The following scenarios demonstrate typical Physical Configuration Management Service
functions relating to the physical configuration management of the network.

6.7.4.1 Add A New Node Scenario

This scenario is depicted in Figure 6.7-3.

6.7.4.1.1 Beginning Assumptions

The network is operating normally.

6.7.4.1.2 Interfaces with Other Subsystems and Segments

None.

6.7.4.1.3 Stimulus

A new node is added to the network.

6-240 305-CD-029-002

User PhysicalConfigurationManager NetworkManager

AddNodeInfo

AddNodeSymbol

NewNodeInfo

SetUpLinks

Figure 6.7-3. Add A New Node

6.7.4.1.4 Participating Classes From the Object Model

NetworkManager

6.7.4.1.5 Beginning System, Segment and Subsystem State(s)

The Physical Configuration Manager and the Network Manager are operating normally.

6.7.4.1.6 Ending State

All the relevant information concerning the new node becomes part of the system.

6.7.4.1.7 Scenario Description

After a new node is added to the network, certain attribute data associated with the node is gathered
automatically by the network manager software and added to the database. Any additional
information is entered manually and the network physical map is updated to include the new node
symbol. Links are set up to attach the new node symbol with the appropriate information fields in
the database.

6.7.4.2 Move An Existing Node Scenario

This scenario is depicted in Figure 6.7-4.

6.7.4.2.1 Beginning Assumptions

The network is operating normally.

6.7.4.2.2 Interfaces with Other Subsystems and Segments

None.

6-241 305-CD-029-002

User PhysicalConfigurationManager NetworkManager

NewLocationInfo

MoveNodeSymbol

Figure 6.7-4. Move An Existing Node

6.7.4.2.3 Stimulus

An existing node is moved to a new location in the network.

6.7.4.2.4 Participating Classes From the Object Model

NetworkManager

6.7.4.2.5 Beginning System, Segment and Subsystem State(s)

The Physical Configuration Manager and the Network Manager are operating normally.

6.7.4.2.6 Ending State

The information concerning the new location is configured into the system.

6.7.4.2.7 Scenario Description

After an existing node is moved to a new location in the network, the attribute data associated with
the node is reassigned automatically by the network management software and reflected in the
database. The node symbol on the network map is moved to the new location with all its database
links preserved.

6.7.4.3 Delete An Existing Node Scenario

This scenario is depicted in Figure 6.7-5.

6.7.4.3.1 Beginning Assumptions

The network is operating normally.

6-242 305-CD-029-002

User PhysicalConfigurationManager NetworkManager

RemoveNodeInfo

RemoveNodeSymbol

RemoveNodeInfo

RemoveLinks

Figure 6.7-5. Delete An Existing Node

6.7.4.3.2 Interfaces with Other Subsystems and Segments

None.

6.7.4.3.3 Stimulus

An existing node is deleted from the network.

6.7.4.3.4 Participating Classes From the Object Model

NetworkManager

6.7.4.3.5 Beginning System, Segment and Subsystem State(s)

The Physical Configuration Manager and the Network Manager are operating normally.

6.7.4.3.6 Ending State

The node symbol and information related to the deleted node are removed from the system.

6.7.4.3.7 Scenario Description

After an existing node is deleted from the network, the attribute data associated with the node is
removed automatically by the network management software and reflected in the database. The
node symbol on the network map is removed with all its database links deleted.

6.7.5 Physical Configuration Management Service Structure

Table 6.7-1 lists the components of the Physical Configuration Management Service.

6-243 305-CD-029-002

Table 6.7-1. Physical Configuration Management Service Components
Component Name COTS/Custom

Physical Configuration Manager COTS

Network Manager COTS

Physical Configuration Proxy Agent Custom

6.7.5.1 Physical Configuration Manager CSC

Purpose and Description

The Physical Configuration Manager CSC is the COTS product MountainView. It is the
configuration management tool that integrates logical network management with physical network
management to provide a complete automated network management platform. It provides a variety
of services related to the physical infrastructure of the network and means for displaying, tracking,
and reporting on the location and status of the various physical components of the system.

Mapping to objects implemented by this component

None.

Candidate products

MountainView

6.7.5.2 Network Manager CSC

Purpose and Description

The Network Manager CSC is the COTS product HP OpenView. This product provides the
management framework with the underlying management services for the management of SNMP
based network devices. It also provides the necessary integration points and services for the
integration of the MountainView application. Since this is a COTS product, it will not be described
in detail here. The reader is referred to the documentation set of HP OpenView for further details
on the product.

Mapping to objects implemented by this component

None.

Candidate products

HP OpenView

6.7.5.3 Physical Configuration Proxy Agent CSC

Purpose and Description

The Physical Configuration Proxy Agent CSC provides the interface with the Management Agent
Services. It allows for remote startup and shutdown of the Physical Configuration Manager
software. It also monitors the log file for errors and sends appropriate messages to the MSS agent
event page and event log file. This is the mechanism employed by the Physical Configuration
Management Service for managing errors.

Mapping to objects implemented by this component

6-244 305-CD-029-002

None.

CSU: Customization of Proxy Agent

6.7.6 Physical Configuration Management Service Management and Operation

6.7.6.1 System Management Strategy

The Physical Configuration Management utilizes the MSS Management Agent Services for its
administration. The Physical Configuration Proxy Agent allows the remote startup, shutdown, and
administration of the Physical Configuration Manager software via the Management Framework.

6.7.6.2 Operator Interfaces

The operator interface is a Motif-like GUI multi-windowing environment. It includes user
definable function buttons and a hierarchical command menu. It supports user definable window
and settings tailored to context sensitive working environment.

6.7.6.3 Reports

Reports are available for the following types of data:

• inventory data

• network protocol data

• software registration data

• SNMP profile data

• network trap data

• maintenance data

• connectivity data

The above reports are examples of stock reports provided by the Physical Configuration
Management Service. Addition reports can be generated by combining or selecting from the
different types of data available. Examples:

Hardware Inventory Report - A report containing information such as type, model, serial number,
etc., for all the network components.

Software Inventory Report - A report containing information such as title, version number,
installation date, etc., for all the software packages installed on different network devices.

6.8 Security Management

6.8.1 Security Management Overview

The Security Management Application Service provides for the management of the security
mechanisms that are used to protect and control access to ECS resources. It provides the rules and
the implementation for authentication procedures, the maintenance of authorization facilities, the
maintenance of security logs, intrusion detection and recovery procedures. The mechanisms used
to provide security in ECS comprise three distinct parts: network security, distributed
communications security, and host-based security.

6-245 305-CD-029-002

Network security management involves the management of routing tables used for address-based
filtering (network authorization). This is implemented through router COTS configuration files
through which access control rules are specified.

Distributed communications security addresses communications between software entities such as
clients and servers employing mechanisms such as Kerberos/DCE for real-time authentication
exchange. The management of distributed communications security involves the management of
the authentication database (the DCE registry database) and the authorization database (DCE
Access Control List Managers). This is managed through the use of Hewlett Packard's acctmgr
tool. The acctmgr tool is a COTS product that provides a Motif-based capability to administer the
DCE security registry (authentication database), and the access controls on cell resources
(authorization database). The acctmgr is part of HP's DCE Core Services.

Host-based security management addresses the control of access to and the protection of these
mechanisms, in addition to the management of compliance to established security policy (e.g.
password usage guidelines), and intrusion detection (e.g. break-ins). Access control to network
services is implemented through TCP wrappers, a public domain tool. Compliance management is
implemented through public domain products npasswd, crack, and SATAN. Intrusion detection is
implemented through the public domain product Tripwire, and custom development.

The Security Management Application Service has two instances, the site and the SMC Security
Management Application Services. The site Security Management Application Service manages
security databases local to it, manages compliance to security directives and guidelines established
and disseminated by the SMC, performs intrusion detection checks in order to maintain the
integrity of ECS resources, provides the capability to analyze security audit trails, and provides the
mechanisms to generate reports for such these activities. The SMC Security Management
Application Service is responsible for establishing and disseminating security guidelines to the
sites, disseminating security advisories received from external systems (security agencies such as
CERT and NIST) to the sites, receiving security reports from the sites, and receiving notifications
of and coordinating the recovery from detected security breaches at the sites and external systems.

6.8.2 Security Management Context

The Security Management Application Service, as shown in the context diagram, Figure 6.8-1,
interfaces with the SMC, the Fault Management Application Service, the Management Database
and with systems external to ECS, namely NSI, IP, NCC, ASTER GDS, MMO, and NOLAN. The
information exchanged across these interfaces, as shown in the diagram, is described here.

Notifications of security events and summary data are forwarded by the Security Management
Application Service to the SMC, while coordination for recovery and security advisories are
received from the SMC. The interface to the Fault Management Application Service (via the
Management Agent Service) allows for the Security Management Application Service to send
security event notifications, fault events, and receive startup and shutdown commands. The
interface to the Management Database provides access to the management data for the purpose of
report generation.

The external systems and the Security Management Application Service exchange notifications of
security breaches and recovery coordination information.

6-246 305-CD-029-002

Security Events

Site
Security Management

Application Service

This System

Responses
security audit trails

Security Breach Notifications
Recovery Coordination

Recovery Coordination

Recovery Coordination
Security Breach Notification

Summary Data
Intrusion Notifications

Requests for security audit trails

Security event notifications

commands

responses and faults

SMC
Security Management
Application Service

Security Advisories

Management Data
Access Service

Management Agent
Services

6-247
305-C

D
-029-002

Fault Management
Application ServiceExternal Systems

Figure 6.8-1. Security Management Context Diagram

6.8.3 Security Management Object Model

The AuthenticationDB and the AuthorizationDB represent the authentication and the authorization
databases respectively. The authentication database contains records for Principals. Principals may
be users, clients, or servers. Each principal has an identification and a password, and may belong
to one or more groups. The M&O staff may create, modify, and delete principal information. These
are capabilities provided by COTS products (operating system-based authentication, DCE
authentication database (rgy_edit)). HP's DCE Cell Administration Tools are a collection of GUI
tools that provide the capability for DCE Cell Management, to include the management of the
authentication database (Registry database) for the management of DCE principals.

Principals attempt to access security-managed resources. These resources comprise data and
services. Access to these resources is controlled by entries in the authorization database. The
Authorization databases control access to the access control lists and allows M&O staff to update
these access control lists in order to control access by Principals of security-managed resources.
These authorization capabilities are provided by the operating system access control lists, router
configuration databases, configuration files of TCP wrappers, and DCE acl_edit (all of which are
COTS products). HP's accntmgr tool, as mentioned above, is a COTS product that provides the
capability for the management of Access Control Lists associated with cell resources.

Security Tests are run on a scheduled basis, and on-demand at the request of the site M&O staff,
in order to audit the implementation of the security mechanisms. MsScManager is the controller
class for the Security Management Application Service. It provides the capability to run a test
(MsScTest) on demand. There are two kinds of security tests: ComplianceTests and
IntrusionDetectionTests. ComplianceTests comprise tests that audit passwords for criteria such as
being easily-guessable or the incorrect length, tests that check for file system integrity, the presence
of world-readable and world-writable directories. IntrusionDetectionTests comprise tests that
check for evidence of break-ins and break-in attempts.

Notifications of security events, security data and security reports are sent to the SMC. The security
data forwarded from the various sites allows the Security Management Service to correlate events
at different sites. Notifications of security breaches are sent to the SMC (and external systems such
as NSI, CERT and the NASIRC), while security advisories are received from them in addition to
the coordination of recovery from security events.

The security management object model is shown in Figure 6.8-2.

6-248 305-CD-029-002

Offpage

MsScManager

GenerateReport(char* ReportId)
RunTest(char* hostname, char* testid)

MsScReport

EcExtSysIFB MsScSMC

COTS

MsScSMC()
SendSummaryData(char* filename)

~MsScSMC()
SendMail(char* filename)

MsScManager()

~MsScManager()

Send(char* destination)
Listen()
EcExtSysIFB()
~EcExtSysIFB()

CsEmMailRelA

EcPfManagedServer

+
+

Offpage

[Public]

+
+

+
+

+

+

+
+
+
+

Offpage

[Public]

is generated by

is generated by

exchange notifications with
exchange notifications with

exchange notifications with

6-249
305-C

D
-029-002

MsScTest

IntrusionDetectionTestComplianceTest

COTS

COTS COTS

Offpage

OffpageOffpage

(CRACK,COPS,SATAN) (TRIPWIRE, TCP Wrappers)

(DCE, OS)
OffpageCOTS

(TCP WRAPPERS, ROUTER-BASED ACL, DCE, OS)
MsAuthenticationDB

MsScAuthorizationDB

RouterACLs OSACL

TCPWrapperConfig

DCEACL_EDIT DCERGY_EDIT OS

HPDCEAccntMgr

COTS

COTS

COTS
COTS COTS COTS COTS COTS

Offpage

Offpage Offpage

Offpage

Offpage Offpage Offpage

Offpage

manages manages

Figure 6.8-2. Security Management Object Model

6.8.3.1 ComplianceTest Class

Parent Class:MsScTest

Public:No

Distributed Object:No

Purpose and Description:

This class represents a security test that checks for the compliance to established security

policy. These tests are implemented through public domain products crack, COPS and

SATAN. Crack checks for the adherence to established policy for passwords by attempting

to guess passwords. COPS and SATAN generate analysis of the security mechanisms of

specified hosts. Since these represent COTS products, these will not be described in detail

here. The reader is referred to the appropriate COTS documentation.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The ComplianceTest class has associations with the following classes:
None

6.8.3.2 CsEmMailRelA Class

Parent Class:EcExtSysIFB

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The CsEmMailRelA class has associations with the following classes:
Class: MsScManager exchangenotificationswith

6-250 305-CD-029-002

6.8.3.3 DCEACL_EDIT Class

Parent Class:MsScAuthorizationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents the ACL_EDIT utility provided by DCE for the purpose of managing

ACLs associated with DCE servers. Since this is a COTS product (DCE), it will not be

described in detail here. The reader is referred to the DCE documentation set for details.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The DCEACL_EDIT class has associations with the following classes:
Class: HPDCEAccntMgr manages

6.8.3.4 DCERGY_EDIT Class

Parent Class:MsAuthenticationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents the DCE utility RGY_EDIT used for the management of DCE

principals in the DCE Registry database (authentication database). Since this is a COTS

product, it will not be described in detail here. The reader is referred to the DCE

documentation set for details.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

6-251 305-CD-029-002

Associations:

The DCERGY_EDIT class has associations with the following classes:
Class: HPDCEAccntMgr manages

6.8.3.5 EcExtSysIFB Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This class represents the interface to external systems such as NSI.

Attributes:

None

Operations:

EcExtSysIFB - This is the default constructor for this class.

Arguments:

Return Type:Void

Privilege:Public

Listen - This method listens for an SNMP trap or a TCP socket, from an external

subsystem.

Arguments:

Return Type:Void

Privilege:Public

Send - This method sends a mail message to the external system as specified by the

destination field.

Arguments:char* destination

Return Type:Void

Privilege:Public

~EcExtSysIFB - This is the destructor for this class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The EcExtSysIFB class has associations with the following classes:

Class: MsScManager exchangenotificationswith

6-252 305-CD-029-002

6.8.3.6 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port

monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class

also starts a thread that triggers scheduled events (i.e. polling ECS application's

performance metrics).

Attributes:

None

Operations:

None

Associations:

The EcPfManagedServer class has associations with the following classes:
None

6.8.3.7 HPDCEAccntMgr Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the COTS product acctmgr which is one of the DCE Cell Management

GUI Tools that come with the DCE Core Service from Hewlet Packard. This product

provides the capability to manage the DCE authentication database (the Registry) and

access control for cell resources (authorization). It is through this interface that an ECS

Registered user will be assigned to security groups that will define what information and

services the user is authorized to access. Since this is a COTS product, it will not be

described in detail here. The reader is referred to the documentation set of the product.

Attributes:

None

Operations:

6-253 305-CD-029-002

None

Associations:

The HPDCEAccntMgr class has associations with the following classes:
Class: DCEACL_EDIT manages
Class: DCERGY_EDIT manages

6.8.3.8 IntrusionDetectionTest Class

Parent Class:MsScTest

Public:No

Distributed Object:No

Purpose and Description:

This class represents a security test that checks for intrusions. Tripwire is a public domain

product that tests for the integrity of a file system by generating checksums of files and

comparing them with a previously generated database of checksums. The configuration of

this product involves establishing the database of file signatures, and establishing a

schedule for the execution of the tests, and the capability for the execution of the tests on

demand. TCP wrappers is a public domain product that monitors and controls access to

network services on a host. The configuration of this product involves the specification of

access rules for network services, configuring the logging of access attempts. Since these

represent COTS products, they will not be described in detail here. The reader is referred

to the appropriate COTS documentation set.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The IntrusionDetectionTest class has associations with the following classes:
None

6.8.3.9 MsAuthenticationDB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

6-254 305-CD-029-002

This class represents the authentication databases that provide authentication for principals.
This functionality is provided by COTS products.

Attributes:

None

Operations:

None

Associations:

The MsAuthenticationDB class has associations with the following classes:

None

6.8.3.10 MsScAuthorizationDB Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the authorization databases that provide access control for resources.

This functionality is provided by COTS products (router configuration files, operating

system access control lists, TCP wrapper configuration files, and DCE ACLs). Since these

are provided by COTS, they will not be described in detail here. The reader is referred to

the appropriate documentation set for details.

Attributes:

None

Operations:

None

Associations:

The MsScAuthorizationDB class has associations with the following classes:

None

6.8.3.11 MsScManager Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

This class provides the capability for the M&O Staff to generate security reports, and to run

6-255 305-CD-029-002

initiate the execution of security tests.

Attributes:

All Attributes inherited from parent class

Operations:

GenerateReport
Arguments:char* ReportId

Return Type:Void

Privilege:Public

MsScManager - This is the default constructor for this class.

Arguments:

Return Type:Void

Privilege:Public

RunTest - This method runs the specified security test on the specified host.

Arguments:char* hostname, char* testid

Return Type:Void

Privilege:Public

~MsScManager - This is the destructor for this class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsScManager class has associations with the following classes:
Class: CsEmMailRelA exchangenotificationswith
Class: EcExtSysIFB exchangenotificationswith
Class: MsScSMC exchangenotificationswith
Class: MsScReport isgeneratedby

6.8.3.12 MsScReport Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the reports generated by the COTS and from the security data stored

6-256 305-CD-029-002

in the management database.

Attributes:

None

Operations:

None

Associations:

The MsScReport class has associations with the following classes:
Class: MsScManager isgeneratedby
Class: MsScTest isgeneratedby

6.8.3.13 MsScSMC Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the interface between the site Security Management Service and the

SMC. It provides the capability to send a report, or a an electronic mail message to the

SMC.

Attributes:

None

Operations:

MsScSMC - This is the default constructor for this class.

Arguments:

Return Type:Void

Privilege:Public

SendMail - This method sends a file containing security data, specified by filename, to the

SMC.

Arguments:char* filename

Return Type:Void

Privilege:Public

6-257 305-CD-029-002

SendSummaryData - This method sends a report containing security data, specified by

filename, to the SMC.

Arguments:char* filename

Return Type:Void

Privilege:Public

~MsScSMC - This is the destructor for this class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsScSMC class has associations with the following classes:
Class: MsScManager exchangenotificationswith

6.8.3.14 MsScTest Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Compliance Management and Intrusion Detection tests that may

be run. These tests are COTS products, and will not be described in detail here. The reader

is referred to the documentation set of the COTS.

Attributes:

None

Operations:

None

Associations:

The MsScTest class has associations with the following classes:
Class: MsScReport isgeneratedby

6.8.3.15 OS Class

Parent Class:MsAuthenticationDB

Public:No

Distributed Object:No

6-258 305-CD-029-002

Purpose and Description:

This class represents the authentication database provided by the operating system. Since

this is provided by COTS, it will not be described in detail here. The reader is referred to

the appropriate documentation for details.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The OS class has associations with the following classes:
None

6.8.3.16 OSACL Class

Parent Class:MsScAuthorizationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents access controls provided by an operating system for host resources.

Since this represents COTS, it will not be described in detail here. The reader is referred to

the appropriate documentation for details.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The OSACL class has associations with the following classes:
None

6-259 305-CD-029-002

6.8.3.17 RouterACLs Class

Parent Class:MsScAuthorizationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents router access control lists, used to filter incoming and outgoing

packets based on the access control rules rules specified. This is a COTS product, and will

not be described in detail here. The reader is referred to the appropriate documentation for

details.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The RouterACLs class has associations with the following classes:
None

6.8.3.18 TCPWrapperConfig Class

Parent Class:MsScAuthorizationDB

Public:No

Distributed Object:No

Purpose and Description:

This class represents the configuration files of TCP Wrappers used to control access to

network services on a host. This control is established through access rules specified for the

various network services. This is the customization of the COTS required. Since this

functionality is provided by COTS, it will not be described in detail here. The reader is

referred to the appropriate COTS documentation for details.

Attributes:

All Attributes inherited from parent class

Operations:

6-260 305-CD-029-002

All Operations inherited from parent class

Associations:

The TCPWrapperConfig class has associations with the following classes:
Non

6.8.4 Security Management Dynamic Model

6.8.4.1 Executing a Compliance Test

This scenario is depicted in Figure 6.8-3.

6.8.4.1.1 Beginning Assumptions

None.

6.8.4.1.2 Interfaces with Other Subsystems and Segments

Management Agent Services

M&O_Staff MsScManager MsAgSubAgent ComplianceTest EcAgEvent Report

RunTest()
RunTest(CrackPwd)

Execute()

CTOR()

LogEvent()

LogEvent()

Figure 6.8-3. Executing a Compliance Test

6.8.4.1.3 Stimulus

An operator initiates the execution of a password guessing test (a compliance test).

6.8.4.1.4 Participating Classes From the Object Model

MsScManager

ComplianceTest

EcAgEvent

Report

6.8.4.1.5 Beginning System, Segment and Subsystem State(s)

The system, segment and subsystem are in a steady state.

6-261 305-CD-029-002

6.8.4.1.6 Ending State

The system, segment and subsystem are in a steady state.

6.8.4.1.7 Scenario Description

In response to operator-provided stimulus, the RunTest method is invoked for the run of a test to
determine the compliance of passwords on the host to established policy. This causes the
compliance test to be instantiated on the remote host specified, by way of the Management Agent
Services. Upon instantiation, a message is logged to indicate the start of the test to the MSS History
Log (via EcAgEvent) on the remote host. The test generates a report which is written to a well
known directory, and another event is written to the MSS History Log to indicate the completion
of the test.

6.8.4.2 Reporting a Security Intrusion

This scenario is depicted in Figure 6.8-4.

ECS Application EcAgEvent MsAgEvent HPOV

CTOR()

LogEvent()

SendEvent()

trap

Figure 6.8-4. Reporting a Security Intrusion

6.8.4.2.1 Beginning Assumptions

None.

6.8.4.2.2 Interfaces with Other Subsystems and Segments

Management Agent Services

6.8.4.2.3 Stimulus

An application receives a request from an unauthorized client.

6-262 305-CD-029-002

6.8.4.2.4 Participating Classes From the Object Model

An ECS application

EcAgEvent

MsAgEvent

UUID

ManagementFramework (HPOV)

6.8.4.2.5 Beginning System, Segment and Subsystem State(s)

The system, segment and subsystem are in a steady state.

6.8.4.2.6 Ending State

The system, segment and subsystem are in a steady state.

6.8.4.2.7 Scenario Description

An ECS application receives a request from a client for a service. The authorization check
performed by the application fails since the client is not authorized to access the requested service.
This unauthorized access is a security violation that needs to be reported. The ECS Application
sends an alert via EcAgEvent. EcAgEvent logs the event to the MSS History Log, and forwards a
real-time notification to MsAgEvent which generates an SNMP trap and sends it to the
Management Framework (HP OpenView NNM).

6.8.5 Security Management Structure

Table 6.8-1 lists the components of the Security Management Application Service.

Table 6.8-1. Security Management Components
Component Name COTS/Custom

MsScManager Custom(C++ code)

MsScSMC Custom

MsScExtSys Custom

MsScReport Custom

Authentication Databases COTS (Operating system, DCE Registry database)
HP's accntmgr tool is selected for the management of the DCE
Registry database.

Authorization Databases COTS (Operating system, DCE Access Control Lists, router
configuration files, TCP wrapper access control configuration files).
HP's accntmgr tool is selected for the management of DCE ACLs.

ComplianceTest COTS (SATAN, Crack, COPS)

IntrusionDetectionTest COTS (Tripwire, TCP Wrappers)

6.8.5.1 Security Manager CSC

Purpose and Description

6-263 305-CD-029-002

The security manager provides the capability for the M&O staff to initiate security tests and the
generation of reports.

6.8.5.2 Security Databases CSC (COTS)

Purpose and Description

The security databases include the Authentication and the Authorization databases, which provide
for the management of user accounts and their access privileges respectively. These are all COTS
products.

Candidate products

Operating System Password Files

DCE Registry Database

Router Configuration Files

TCP Wrappers configuration files

Operating System Access Control Lists

DCE Access Control Lists

6.8.5.3 Tests CSC (COTS)

Purpose and Description

These tests comprise compliance management tests and intrusion detection tests. Compliance tests
permit the verification of adherence to an established security policy. These tests are all COTS.

Candidate products

CRACK, COPS, SATAN, TRIPWIRE

6.8.5.4 DCE Cell Management CSC

Purpose and Description

This class provides the capability to manage DCE services including security services.

Candidate products

HP's accntmgr tool

6.8.6 Security Management Management and Operation

6.8.6.1 System Management Strategy

The Security Management Service Management Strategy utilizes the ECS Process Framework for
its management.

6.8.6.2 Operator Interfaces

The public domain security products have command line interfaces. Some products have a
graphical user interface as well. These interfaces will be available to the operator. The HP's
accntmgr tool has both interfaces.

6-264 305-CD-029-002

6.8.6.3 Reports

The following predefined security management reports will be available:

Security Compromise report -- table listing details for all detected security violations or attempted
intrusions.

Security Compromise Statistics report -- table of statistics summarizing security violations or
attempted intrusions over an operator-specified time period.

Other security management reports will be generated on an ad hoc basis.

6.9 Trouble Ticketing

6.9.1 Trouble Ticketing Overview

The Trouble Ticketing Service (TTS) provides the DAACs a common environment and means of
classifying, tracking, and reporting problem occurrence and resolution to both ECS users and
support staff members. TTS's core functionality is provided by the Remedy Action Request
System, a COTS product. Through the configuration of this product, TTS will:

• provide a graphical user interface for support staff members to access all TTS services

• include a definition of the common trouble ticket entry format

• store trouble tickets

• retrieve trouble tickets through a wide variety of criteria (ad-hoc queries)

• provide the ability to “forward” problems from one DAAC to another (or DAAC to SMC)

• produce stock and common reports

•	 interface with the common e-mail environment to provide automatic notification to users
and support staff members

•	 offer an application programming interface through which applications could submit
trouble tickets

•	 provide summary information to the SMC from each DAAC to allow trend reports
regarding trouble tickets.

•	 define a consistent “life-cycle” for trouble tickets (through a set of standard status codes
and escalation and action rule definition)

•	 allow each DAAC of degree a customization through definition of further escalation and
action rules.

Escalation rules are simply time activated events which execute on trouble tickets which meet a set
of specified criteria. Actions which can be taken include notification (of either a user or support
staff member), writing to a log file, setting a field value on the trouble ticket, or even running a
custom written process. Qualifications can be expressed on any trouble ticket data TTS tracks.
Examples of custom escalation rules might include:

•	 if a “High” priority trouble ticket stays in “Assigned” for more than 48 hours without being
moved to “Solution Proposed”, re-notify the assigned support staff member

•	 if a “Low” priority trouble ticket is not moved to “Closed” within 14 days, raise the priority
to “Medium” and re-notify the assigned support staff member.

6-265 305-CD-029-002

Active links are similar to escalation rules with the exception that they are defined to take place on
a specified action rather than at a given time. Examples of custom active links which can be defined
by a particular DAAC include:

•	 if a high priority trouble ticket is closed with a particular resolution code, notify a specified
member of the support staff (perhaps a manager).

In addition to the functionality provided by Remedy, TTS will utilize a set of custom HTML
documents to provide users with the ability to submit new trouble tickets and query the current
status of any of their previous entries. Access to TTS through this technique will provide users an
easy method for reporting problems in an environment with which most are already familiar.
Additionally, as another means of trouble ticket entry, the TTS will provide a textual e-mail
template through which automated entry of trouble tickets is also possible. Finally, support staff
members are able to enter trouble tickets through the Remedy provided interface for problem
received via other methods (e.g. phone calls).

In addition to tracking Trouble Tickets, the Remedy ARS will also function as the User Contact
Log. Remedy will be configured to have a separate schema that will contain the entries that User
Services personnel enter for each contact that they receive from a user. The User Contact Log will
also allow a trouble ticket to be initiated from a log entry with the push of a button - the trouble
ticket will be populated with information from the contact log.

6.9.2 Trouble Ticketing Context

The Trouble Ticketing Service context diagram is shown in Figure 6.9-1. TTS receives
management requests, (e.g. start up, shutdown) from the Management Agent. Once the requests
are completed, an event is logged through the Management Agent. To aid in the submission of
trouble tickets, TTS requests and receives user profile information to populate submitter
information in the HTML interface. The Trouble Ticketing Service receives updates and ticket
submissions and sends notifications and displays to the Support Staff operators. The ECS users
can submit Trouble Tickets and receive displays of Trouble Ticket status and e-mail notifications
of status changes.

6.9.3 Trouble Ticketing Object Model

Figure 6.9-2 represents the classes which model the Trouble Ticketing Service.

6-266 305-CD-029-002

Trouble Ticketing Service

Accountability

Mangement AgentSupport Staff

ECS Registered User

This System

Mangement Requests

Request for User Profile Information

User Profile Information

event data

Trouble Ticket notifications,
Trouble Ticket System displays

Trouble Ticket submissions,
Trouble Ticket updates

Trouble Ticket submissions

Trouble Ticket notifications,
Trouble Ticket displays

Figure 6.9-1. Trouble Ticketing Context Diagram

6-267 305-CD-029-002

Offpage

MsTtEntry

MsTtHTMLItems

MsTtManager

MsTtProxy

MsTtServiceRequestor

(COTS - Remedy Action Request System)

EcAgCOTSManager

MsTtProxy()
~MsTtProxy()
Shutdown()
Startup()

Accountability

MsAcUsrProfileMgr

MsAcUsrProfile

MsTtEntryList

RWSlistCollectables

TMPL_Vars

CGI_Vars

RWHashDictionary

RWCollectable

TMPL_Element

Accountability

TMPL_Vars()
insert(RWCollectable * pElement)
process(istream &stInput, ostream &stOuput, char *szMarker = '##')
process(char * szFileName, ostream &stOuput)
get(RWCString &rsName)

CGI_Vars()
get(char * szName)
get(RWCString &rsName)
LoadGetElements()
LoadPostElements()
LoadEnvironmentVariables()

main()
MsTtShowSubmitPage(CGI_Vars * CGIData, EcTChar *szUserId)
MsTtSubmitTroubleTicket(CGI_Vars CGIData, EcTChar * szUserId)
MsTtListTroubleTicket(CGI_Vars CGIData, EcTChar * szUserId)
MsTtShowDetailedTroubleTicket(CGI_Vars CGIData, EcTChar * szUserId)
MsTtError(EcTChar * szErrMsg)
MsTtReadConfig(EcTChar * szServerUser, EcTChar * szMachName)
CheckNetscape(CGI_Vars * cgiData)

MsTtHTMLMenu

entryId
problemLongDescription
problemShortDescription
resolutionLog
status
submitterEmail
submitterId
submitterImpact
submitterName
submitterPhone

SetEntryId(const EcTChar * newSubmitterId)
SetProblemLongDesc(const EcTChar *
SetProblemShortDesc(const EcTChar * newProblemShortDesc)
SetStatus(EcTInt newStatus)
SetSubmitterEmail(const EcTChar * SetSubmitterEmail)
SetSubmitterId(const EcTChar * newSubmitterId)
SetSubmitterImpact(EcTInt newSubmitterImpact)
SetSubmitterName(const EcTChar * newSubmitterName)
SetSubmitterPhone(const EcTChar * newSubmitterPhone)
GetEntryId()
GetSubmitterId()
GetSubmitterName()
GetSubmitterPhone()
GetSubmitterEmail()
GetSubmitterImpact()
GetStatus()
GetProblemShortDesc()
GetProblemLongDesc()
GetResolutionLog()
MsTtEntry()

main()
MsTtError(EcTChar *szErrMsg)

prsName
prsValue
rsDirectValue
szValue

TMPL_Element()
TMPL_Element(char * szName, char **szNewValue)
TMPL_Element(char * szName, RWCString **prsNewValue)
TMPL_Element(RWCString &rsNewName, char **szNewValue)
TMPL_Element(RWCString &rsNewName, RWCString **prsNewValue)
TMPL_Element(char *szName, RWCString *prsNewValue)
TMPL_Element(RWCString &rsNewName, RWCString *prsNewValue)
~TMPL_Element()
name()
value()

control

Retrieve(const EcTChar * entryId, MsTtEntry * entry)
RetrieveList(const EcTChar * submitterId, MsTtEntryList * entryList)
PrintStatusStruct(requestARStatusStruct * statusStruct)
PrintStatusList(requestARStatusList * statusList)
Submit(MsTtEntry * entry)
SubmitEMail(MsTtEntry * entry)
MsTtServiceRequestor(EcTChar * userID, EcTChar

CsEmMailRelA

Offpage

Offpage

+
+
+
+

[DISTR OBJ]

[Public][External]

Offpage

[Public][External]

Offpage

Offpage

Offpage

Offpage

Offpage

+
+ : RWCollectable *
+ : void
+ : void
- : TMPL_Element *

+
+ : CGI_Element *
+ : CGI_Element *
- : Void
- : Void
- : Void

+ : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTInt
- : EcTinT
- : EcTInt
- : EcTInt

- : RWCString
- : RWCString
- : RWCString
- : RWCString
- : EcTInt
- : RWCString
- : RWCString
- : EcTInt
- : RWCString
- : RWCString

+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : EcTVoid
+ : const EctChar *

+ : const EctChar *
+ : const EctChar *
+ : const EctChar *
+ : EcTInt
+ : EcTInt
+ : const EctChar *
+ : const EctChar *
+ : const EctChar *
+

+ : EcTInt
- : EcTInt

- : RWCString *
- : RWCString **
- : RWCString
- : char **

+
+
+
+
+
+
+
+
+ : char *
+ : Char *

- : ARControlStruct

+ : EcTVoid
+ : EcTVoid
- : EcTVoid
- : EcTVoid
+ : EcTVoid
- : EcTVoid
+

submits to remedy ARS

provides web inteface

Request user profile from

accessed by

Creates and reads

populate from Remedy

creates Web page elements

provides HTML interface

manages

display on Web page

displays on Web page

creates and populates

request user profile from

creates and reads

displays items on Web page

provides HTML interface

displays items on Web page

Populates

send TT submit e-mail

newProblemLongDesc)

* server)

6-268
305-C

D
-029-002

Figure 6.9-2. Trouble Ticketing Object Model

6.9.3.1 CGI_Vars Class

Parent Class:RWHashDictionary

Attributes:

All Attributes inherited from parent class

Operations:

CGI_Vars
Arguments:
Return Type:Void
Privilege:Public

LoadEnvironmentVariables
Arguments:
Return Type:Void
Privilege:Private

LoadGetElements
Arguments:
Return Type:Void
Privilege:Private

LoadPostElements
Arguments:
Return Type:Void
Privilege:Private

get
Arguments:char * szName
Return Type:CGI_Element *
Privilege:Public

get
Arguments:RWCString &rsName
Return Type:CGI_Element *
Privilege:Public

Associations:

6-269 305-CD-029-002

The CGI_Vars class has associations with the following classes:
Class: MsTtHTMLItems providesHTMLinterface
Class: MsTtHTMLMenu providesHTMLinterface

6.9.3.2 CsEmMailRelA Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The CsEmMailRelA class has associations with the following classes:
Class: MsTtServiceRequestor sendTTsubmite-mail

6.9.3.3 EcAgCOTSManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

this abstract class embodies the characteristics and functionality of a manager object

responsible for managing a single COTS process. It encapsulates all MSS management

application functions into a single class. The COTS proxy agent developer is responsible

for inheriting from this class and specializing it towards the COTS process to manage.

Attributes:

None

Operations:

None

Associations:

6-270 305-CD-029-002

The EcAgCOTSManager class has associations with the following classes:
None

6.9.3.4 MsAcUsrProfile Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

Attributes:

None

Operations:

None

Associations:

The MsAcUsrProfile class has associations with the following classes:
Class: MsTtHTMLItems Createsandreads
Class: MsAcUsrProfileMgr Populates
Class: MsTtHTMLMenu createsandreads

6.9.3.5 MsAcUsrProfileMgr Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

This class represents the User Profile Manager class that governs the update and

maintenance of information in the MsAcUsrProfile class. An ECS science user's available

balance will be retrieved using this class and be debited by the amount of each data product

request received by MSS.

Attributes:

None

Operations:

None

6-271 305-CD-029-002

Associations:

The MsAcUsrProfileMgr class has associations with the following classes:
Class: MsAcUsrProfile Populates
Class: MsTtHTMLItems Requestuserprofilefrom
Class: MsTtHTMLMenu requestuserprofilefrom

6.9.3.6 MsTtEntry Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The MsTtEntry class models a request for action (Trouble Ticket) on a particular problem

and the subsequent actions performed on it. This class contains the fields which are

accessible to a user through the Web interface. This class will contain a trouble ticket

object to be submitted to the Remedy Action Request System or a trouble ticket object

retrieved from Remedy to be dislplayed to the user through the Web interface.

Attributes:

entryId - The unique identifier of a TT (generated by Remedy Action Request, has unique

prefix for each DAAC)

Data Type:RWCString

Privilege:Private

Default Value:

problemLongDescription - A detailed description of the problem reported in the TT.

Data Type:RWCString

Privilege:Private

Default Value:

problemShortDescription - A brief (1 line) description of the problem reported in the TT.

Data Type:RWCString

Privilege:Private

Default Value:

resolutionLog - A running diary of the resolution process for the TT.

Data Type:RWCString

Privilege:Private

Default Value:

status - The current status of the TT, valid values are : New : indicates the trouble ticket

has just been submitted by a user, Assigned : indicates the trouble ticket has been assigned

to a member of the support staff, Solution Proposed : indicates the trouble ticket has been

6-272 305-CD-029-002

proposed a solution, Implement Solution : indicates the proposed solution of the trouble

ticket has been approved to implement, Solution Implemented : indicates the proposed

solution of the trouble ticket has been implemented, Closed : indicates the trouble ticket has

been closed, Forwarded : indicates the trouble ticket has been forwarded to another site

Work Around : indicates the trouble ticket has been temporarily addressed Not Repeatable

: indicates the trouble ticket problem is not repeatable.

Data Type:EcTInt

Privilege:Private

Default Value:

submitterEmail - The e-mail address of the TT submitter.

Data Type:RWCString

Privilege:Private

Default Value:

submitterId - User Id of the TT submitter.

Data Type:RWCString

Privilege:Private

Default Value:

submitterImpact - Indicator of the impact of the problem reported in the TT as seen by

the submitter.

Data Type:EcTInt

Privilege:Private

Default Value:

submitterName - the name of the submitter

Data Type:RWCString

Privilege:Private

Default Value:

submitterPhone - the phone number of the submitter

Data Type:RWCString

Privilege:Private

Default Value:

Operations:

GetEntryId - This function is a simple get method for getting the unique entry ID of the

TT.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

6-273 305-CD-029-002

GetProblemLongDesc - This function is a simple get method for getting the long problem

description of the TT.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetProblemShortDesc - This function is a simple get method for getting the short

problem description of the TT.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetResolutionLog - This function is a simple get method for getting the resolution log of

the TT.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetStatus - This function is a simple get method for getting the status of the TT.

Arguments:

Return Type:EcTInt

Privilege:Public

PDL: No PDL

GetSubmitterEmail - This function is a simple get method for getting the Email address

of the TT submitter.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetSubmitterId - This function is a simple get method for getting the user ID of the TT

submitter.

Arguments:

PDL: No PDL

GetSubmitterImpact - This function is a simple get method for getting the submitter

impact of the TT.

Arguments:

Return Type:EcTInt

Privilege:Public

6-274 305-CD-029-002

PDL: No PDL

GetSubmitterName - This function is a simple get method for getting the name of the TT

submitter.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

GetSubmitterPhone - This function is a simple get method for getting the phone number

of the TT submitter.

Arguments:

Return Type:const EctChar *

Privilege:Public

PDL: No PDL

MsTtEntry - This is the constructor for the class.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

SetEntryId - This function is a simple set method for setting the entry ID of the TT. If the

passed string exceeds the maximum length allowed, an exception is thrown.

Arguments:const EcTChar * newSubmitterId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetProblemLongDesc - This function is a simple set method for setting the problem long

description of the TT. If the passed string exceeds the maximum length allowed, an

exception is thrown.

Arguments:const EcTChar * newProblemLongDesc

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetProblemShortDesc - This function is a simple set method for setting the problem short

description of the TT. If the passed string exceeds the maximum length allowed, an

exception is thrown.

Arguments:const EcTChar * newProblemShortDesc

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

6-275 305-CD-029-002

SetStatus - This function is a simple set method for setting the status of the TT. If the

passed string exceeds the maximum length allowed, an exception is thrown.

Arguments:EcTInt newStatus

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitterEmail - This function is a simple set method for setting the submitter email

of the TT. If the passed string exceeds the maximum length allowed, an exception is

thrown.

Arguments:const EcTChar * SetSubmitterEmail

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitterId - This function is a simple set method for setting the submitter id of the

TT. If the passed string exceeds the maximum length allowed, an exception is thrown.

Arguments:const EcTChar * newSubmitterId

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitterImpact - This function is a simple set method for setting the submitter

impact of the TT. If the passed string exceeds the maximum length allowed, an exception

is thrown.

Arguments:EcTInt newSubmitterImpact

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitterName - This function is a simple set method for setting the submitter name

of the TT. If the passed string exceeds the maximum length allowed, an exception is

thrown.

Arguments:const EcTChar * newSubmitterName

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SetSubmitterPhone - This function is a simple set method for setting the phone number

of the TT submitter. If the passed string exceeds the maximum length allowed, an

exception is thrown.

Arguments:const EcTChar * newSubmitterPhone

Return Type:EcTVoid

Privilege:Public

6-276 305-CD-029-002

PDL: No PDL

Associations:

The MsTtEntry class has associations with the following classes:
Class: MsTtHTMLItems createsandpopulates
Class: MsTtServiceRequestor submitstoremedyARS

6.9.3.7 MsTtEntryList Class

Parent Class:RWSlistCollectables

Public:No

Distributed Object:No

Purpose and Description:

This class represents a linked list of trouble ticket entries. All attributes and functions are

inherited from its parent class. This class was created for possible future extensibility.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsTtEntryList class has associations with the following classes:
Class: MsTtHTMLItems displayonWebpage
Class: MsTtServiceRequestor populatefromRemedy
MsTtEntry (Aggregation)

6.9.3.8 MsTtHTMLItems Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The MsTtHTMLItems class is a manager class which manages the HTML interface

provided to the users to allow them to create or query the status of their trouble tickets.

Attributes:

6-277 305-CD-029-002

None

Operations:

CheckNetscape - This routine checks to see if the user is using Netscape.

Arguments:CGI_Vars * cgiData

Return Type:EcTInt

Privilege:Private

PDL: No PDL

MsTtError - This routine displays a Web page to the user indicating an error which

occurred during the processing.

Arguments:EcTChar * szErrMsg

Return Type:EcTinT

Privilege:Private

PDL: No PDL

MsTtListTroubleTicket - This routine retrieves the list of TTs submitted by the user via

MsTtServiceRequetor and displays a Web page containing that list to the user.

Arguments:CGI_Vars CGIData, EcTChar * szUserId

Return Type:EcTInt

Privilege:Private

PDL: No PDL

MsTtReadConfig - This routine reads the configuration file.

Arguments:EcTChar * szServerUser, EcTChar * szMachName

Return Type:EcTInt

Privilege:Private

PDL: No PDL

MsTtShowDetailedTroubleTicket - This routine retrieves the TT, via

MsTtServiceRequestor, that the user selected from the list and displays the TT to the user

on a Web page.

Arguments:CGI_Vars CGIData, EcTChar * szUserId

Return Type:EcTInt

Privilege:Private

PDL: No PDL

MsTtShowSubmitPage - This routine displays the TT submit form to the user, filling in

information about the user retrieved from their user profile.

Arguments:CGI_Vars * CGIData, EcTChar *szUserId

Return Type:EcTInt

Privilege:Private

PDL: No PDL

6-278 305-CD-029-002

MsTtSubmitTroubleTicket - This routine takes the information from the TT submit page

that the user entered, builds a TT object from the information, and submits the TT via

MsTtServiceRequestor.

Arguments:CGI_Vars CGIData, EcTChar * szUserId

Return Type:EcTInt

Privilege:Private

PDL: No PDL

main - This routine receives HTML input from the user selecting options on the Web page

and calls the appropriate routines to perform the actions.

Arguments:

Return Type:EcTInt

Privilege:Public

PDL: No PDL

Associations:

The MsTtHTMLItems class has associations with the following classes:
Class: MsAcUsrProfile Createsandreads
Class: MsAcUsrProfileMgr Requestuserprofilefrom
Class: TMPL_Element createsWebpageelements
Class: MsTtEntry createsandpopulates
Class: MsTtEntryList displayonWebpage
Class: TMPL_Vars displaysitemsonWebpage
Class: CGI_Vars providesHTMLinterface
Class: MsTtServiceRequestor provideswebinteface

6.9.3.9 MsTtHTMLMenu Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class manages the initial HTML Web page that presents the options that the user can

perform on TTs.

Attributes:

None

Operations:

6-279 305-CD-029-002

MsTtError - This routine displays an error message in a Web page to the user.

Arguments:EcTChar *szErrMsg

Return Type:EcTInt

Privilege:Private

PDL: No PDL

main - This routine verifies that the user is registered in ECS and displays the TT menu

Web page. If the user is not registered or any error occurs, an error Web page is displayed.

Arguments:

Return Type:EcTInt

Privilege:Public

PDL: No PDL

Associations:

The MsTtHTMLMenu class has associations with the following classes:
Class: MsAcUsrProfile createsandreads
Class: TMPL_Vars displaysitemsonWebpage
Class: CGI_Vars providesHTMLinterface
Class: MsAcUsrProfileMgr requestuserprofilefrom

6.9.3.10 MsTtManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The MsTtManager class represents the Remedy Action Request System, a COTS product.

This product provides the core functionality for tracking, classifying, and reporting

problem occurrence and resolution. Since this class is purely COTS, it will not be

described in detail here. For detailed product information, the reader is directed to the

Remedy Action Request System documentation set.

Attributes:

None

Operations:

None

Associations:

6-280 305-CD-029-002

The MsTtManager class has associations with the following classes:
Class: MsTtServiceRequestor accessedby
Class: MsTtProxy manages

6.9.3.11 MsTtProxy Class

Parent Class:EcAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

The MsTtProxy class provides the interface to the Management Agent Services. It allows

the MsTtManager (Remedy) software to be remotely monitored and managed. The

methods on this class are the callbacks provided as specific implemtation of the MSS

lifecycle calls.

Attributes:

All Attributes inherited from parent class

Operations:

MsTtProxy - default constructor

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Shutdown - This method will shutdown the MsTtManager (Remedy) software.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

Startup - This method will startup the MsTtManager (Remedy) software.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

~MsTtProxy - default destructor

Arguments:

Return Type:Void

Privilege:Public

6-281 305-CD-029-002

PDL: No PDL

Associations:

The MsTtProxy class has associations with the following classes:
Class: MsTtManager manages

6.9.3.12 MsTtServiceRequestor Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

The MsTtServiceRequestor class is responsible for processing requests from

MsTtHTMLItems (the user interface) and fullfilling them using the functionality provided

by the MsTtManager (Remedy).

Attributes:

control - Remedy AR Control Structure

Data Type:ARControlStruct

Privilege:Private

Default Value:

Operations:

MsTtServiceRequestor - This function serves as the constructor of the

MsTtServiceRequestor class. It establishes a connection with the specified Remedy Action

Request System server.

Arguments:EcTChar * userID, EcTChar * server

Return Type:Void

Privilege:Public

PDL: No PDL

PrintStatusList - This function is meant for development level debugging only. It will

give a formatted printout of a linked list of Remedy status structures.

Arguments:requestARStatusList * statusList

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

PrintStatusStruct - This function is meant for development level debugging only. It will

give a formatted printout of a single Remedy status structure.

Arguments:requestARStatusStruct * statusStruct

6-282 305-CD-029-002

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

Retrieve - The function retrieves a single entry from the Remedy Action Request System

based on the entry ID that is passed.

Arguments:const EcTChar * entryId, MsTtEntry * entry

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

RetrieveList - This function retrieves a linked list of entries for a particular user from the

Remedy action Request System.

Arguments:const EcTChar * submitterId, MsTtEntryList * entryList

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

Submit - This function submits the passed entry on to the Remedy Action Request System.

Arguments:MsTtEntry * entry

Return Type:EcTVoid

Privilege:Public

PDL: No PDL

SubmitEMail - This function builds a formated e-mail message from the information in

the TT and sends the message to the Remedy Action Request system via e-mail.

Arguments:MsTtEntry * entry

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

Associations:

The MsTtServiceRequestor class has associations with the following classes:
Class: MsTtManager accessedby
Class: MsTtEntryList populatefromRemedy
Class: MsTtHTMLItems provideswebinteface
Class: CsEmMailRelA sendTTsubmite-mail
Class: MsTtEntry submitstoremedyARS

6.9.3.13 RWCollectable Class

Parent Class:Not Applicable

6-283 305-CD-029-002

Attributes:

None

Operations:

None

Associations:

The RWCollectable class has associations with the following classes:
None

6.9.3.14 RWHashDictionary Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWHashDictionary class has associations with the following classes:
None

6.9.3.15 RWSlistCollectables Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

6-284 305-CD-029-002

Associations:

The RWSlistCollectables class has associations with the following classes:
None

6.9.3.16 TMPL_Element Class

Parent Class:RWCollectable

Attributes:

prsName
Data Type:RWCString *
Privilege:Private
Default Value:

prsValue
Data Type:RWCString **
Privilege:Private
Default Value:

rsDirectValue
Data Type:RWCString
Privilege:Private
Default Value:

szValue
Data Type:char **
Privilege:Private
Default Value:

Operations:

TMPL_Element
Arguments:char * szName, char **szNewValue
Return Type:Void
Privilege:Public

TMPL_Element
Arguments:char * szName, RWCString **prsNewValue
Return Type:Void
Privilege:Public

TMPL_Element

6-285 305-CD-029-002

Arguments:RWCString &rsNewName, char **szNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:RWCString &rsNewName, RWCString **prsNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:char *szName, RWCString *prsNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:RWCString &rsNewName, RWCString *prsNewValue

Return Type:Void

Privilege:Public

TMPL_Element
Arguments:
Return Type:Void
Privilege:Public

name
Arguments:

Return Type:char *

Privilege:Public

value
Arguments:

Return Type:Char *

Privilege:Public

~TMPL_Element
Arguments:
Return Type:Void
Privilege:Public

Associations:

The TMPL_Element class has associations with the following classes:
Class: MsTtHTMLItems createsWebpageelements
Class: TMPL_Vars displaysonWebpage

6-286 305-CD-029-002

6.9.3.17 TMPL_Vars Class

Parent Class:RWHashDictionary

Public:No

Distributed Object:No

Purpose and Description:

The MsTtEntry class models a request for action on a particular problem and the

subsequent actions performed on it. This class encapsulates the common definition of a

trouble ticket configured in the ECS implementation of the Remedy Action Request

System

Attributes:

All Attributes inherited from parent class

Operations:

TMPL_Vars
Arguments:
Return Type:Void
Privilege:Public

get
Arguments:RWCString &rsName
Return Type:TMPL_Element *
Privilege:Private

insert
Arguments:RWCollectable * pElement
Return Type:RWCollectable *
Privilege:Public

process
Arguments:istream &stInput, ostream &stOuput, char *szMarker = '##'

Return Type:void

Privilege:Public

process
Arguments:char * szFileName, ostream &stOuput

Return Type:void

Privilege:Public

Associations:

6-287 305-CD-029-002

The TMPL_Vars class has associations with the following classes:

Class: MsTtHTMLItems displaysitemsonWebpage

Class: MsTtHTMLMenu displaysitemsonWebpage

Class: TMPL_Element displaysonWebpage

6.9.4 Trouble Ticketing Dynamic Model

The following scenarios demonstrate typical TTS interaction as it relates to both users and support
staff members.

6.9.4.1 User Submits a Trouble Ticket

This scenario represents the typical sequence of events and interactions for a user submitting a new
trouble ticket into the system. The scenario is shown in Figure 6.9-3.

6.9.4.1.1 Beginning Assumptions

none

6.9.4.1.2 Interfaces with Other Subsystems and Segments

MsAcUsrProfile

MsAcProfileMgr

6.9.4.1.3 Stimulus

A user encounters a problem.

6.9.4.1.4 Participating Classes From the Object Model

MsTtHTMLItems

MsAcUsrProfile

MsAcProfileMgr

TMPL_Vars

MsTtServiceRequestor

MsTtManager

MsTtEntry

6.9.4.1.5 Beginning System, Segment and Subsystem State(s)

The MsTtManager is in normal operational state.

6.9.4.1.6 Ending State

A new trouble ticket is created. The MsTtManager is in normal operational state.

6-288 305-CD-029-002

User MsTtHTMLItems MsAcUsrProfile EcAcProfileMgr TMPL_Vars MsTtEntry MsTtServiceRequestor MsTtManager SupportStaffMember

Enter Ticket Info and hit submit

Hit the Submit Button

Display blank TT w/user profile info

Display Confirmation Page
w/Trouble Ticket Entry Id

NotifySupportStaffMember

MsAcUsrProfile()

RetrieveProfile()

insert() - insert fields into HTML form

process() - display the form

MsAcUsrProfile()

RetrieveProfile()

SetSubmitterName()
...

GetFirstName()
...

Submit()

ARCreateEntry()

GetSubmitterName()
...

Send E-mail to Submitter

6-289
305-C

D
-029-002

Figure 6.9-3. User Submits Trouble Ticket

6.9.4.1.7 Scenario Description

A user of the system encounters a problem. This problem may be with either hardware or software.
The user then invokes the Web interface to the Trouble Tickets via the MsTtHTMLItems class. The
user indicates that a new trouble ticket is to be created. The MsTtHTMLItems retrieves information
about the user from the user profile database (MsAcUsrProfile, MsAcProfileMgr) and populates
the Trouble Ticket form. MsTtHTMLItems displays the initialized trouble ticket form. Next, the
user proceeds to enter into the form, the information pertaining to the particular problem. When
complete, the user indicates that the trouble ticket is to be submitted.

The MsTtHTMLItems again retrieves the user profile information populates a MsttEntry object
and submits the trouble ticket entry to MsTtServiceRequestor. Retrieving the user detail
information, the MsTtServiceRequestor submits the Trouble Ticket to the MsTtManager for entry
into the Remedy System. The manager creates a new trouble ticket with a unique entry id.
Additionally, the MsTtManager notifies the support staff member responsible for assigning trouble
tickets that a new one has entered the system.

The entry id and confirmation of the successful transaction are returned to the MsTtEntry,
MsTtServiceRequestor and finally the MsTtHTMLItems . The MsTtHTMLItems indicates a
successful trouble ticket submission to user.

6.9.4.2 User Submits a Trouble Ticket When Remedy is Down

This scenario is much like the previous, except in this scenario, the Remedy Action Request
System is not currently running. The scenario is shown in Figure 6.9-4.

6.9.4.2.1 Beginning Assumptions

none

6.9.4.2.2 Interfaces with Other Subsystems and Segments

MsAcUsrProfile

MsAcProfileMgr

6.9.4.2.3 Stimulus

A user encounters a problem.

6.9.4.2.4 Participating Classes From the Object Model

MsTtHTMLItems

MsAcUsrProfile

MsAcProfileMgr

TMPL_Vars

MsTtServiceRequestor

MsTtManager

MsTtEntry

CsEmMailRelA

6-290 305-CD-029-002

User MsTtHTMLItems MsAcUsrProfile EcAcProfileMgr TMPL_Vars MsTtEntry MsTtServiceRequestor MsTtManager CsEmMailRelA SupportStaffMember

Enter Ticket Info and hit submit

Hit the Submit Button

Display blank TT w/user profile info

Display Confirmation Page
w/o Trouble Ticket Entry Id

NotifySupportStaffMember

MsAcUsrProfile()

RetrieveProfile()

insert() - insert fields into HTML form

process() - display the form

MsAcUsrProfile()

RetrieveProfile()

SetSubmitterName()
...

GetFirstName()
...

Submit()

ARCreateEntry()
failure returned

GetSubmitterName()
...

Send E-mail to Submitter

SubmitEMail()

Remedy comes up

ctor

SendEMail()

EMailSubmission
Is Queued

6-291
305-C

D
-029-002

Figure 6.9-4. User Submits Trouble Ticket When Remedy is Down

6.9.4.2.5 Beginning System, Segment and Subsystem State(s)

The MsTtManager is not operational.

6.9.4.2.6 Ending State

A new trouble ticket is created. The MsTtManager is back in normal operational state.

6.9.4.2.7 Scenario Description

The following portion is just the same as the above scenario:

A user of the system encounters a problem. This problem may be with either hardware or software.
The user then invokes the Web interface to the Trouble Tickets via the MsTtHTMLItems class. The
user indicates that a new trouble ticket is to be created. The MsTtHTMLItems retrieves information
about the user from the user profile database (MsAcUsrProfile, MsAcProfileMgr) and populates
the Trouble Ticket form. MsTtHTMLItems displays the initialized trouble ticket form. Next, the
user proceeds to enter into the form, the information pertaining to the particular problem. When
complete, the user indicates that the trouble ticket is to be submitted.

The MsTtHTMLItems again retrieves the user profile information populates a MsTtEntry object
and submits the trouble ticket entry to MsTtServiceRequestor. Retrieving the user detail
information, the MsTtServiceRequestor submits the Trouble Ticket to the MsTtManager for entry
into the Remedy System.

Here is where the scenario changes from the previous:

The MsTtServiceRequestor receives a failure indication when trying to access MsTtManager.
MsTtServiceRequestor creates a CsEmMailRelA object and uses the object to create a formatted
e-mail message addressed to the MsTtManager (Remedy ARS). MsTtServiceRequestor tells
CsEmMailRelA to send the e-mail. A confirmation page is displayed to the user indicating that
the Trouble Ticketing system is down, but the new Trouble Ticket will be submitted as soon as it
becomes available.

At some later time, MsTtManager (Remedy) comes back up. Remedy will read its incoming mail
and create a Trouble Ticket with a unique entry id. The MsTtManger notifies the originating user
and the support staff member responsible for assigning new trouble tickets of the new trouble
ticket.

6.9.4.3 A Trouble Ticket is Worked

This scenario represents the typical sequence of events and interactions for a trouble ticket to be
worked after it has entered the system. This scenario is shown in Figure 6.9-5.

6-292 305-CD-029-002

User OpsSupervisor MsTtManager Technician
TroubleTicket
ReviewBoard

NotifyUser

NotifyUser

NotifyOpsSupervisor

AssignTroubleTicket

ModifyTroubleTicketAssignment

ModifyTroubleTicketDetail

ModifyTroubleTicketDetailAndStatus

NotifyAssigned Technician

UpdateTroubleTicket
DetermineSolution

ExamineSolutionAndApprove

UpdateTTStatusTo "Implement Solution"

ModifyTTStatus

ExecuteTheSolution

ExamineImplementationAndApprove

UpdateTTStatusTo "Close" andAddReasonCode

UpdateAndCloseTheTT

SetStatusToSolutionProposedAndAddSolution

GetReportsOfSolutionProposedTTs

UpdateTTStatusTo "Solution Implemented"

GetReportsOf "Implement Solution" TTs

6-293
305-C

D
-029-002

Figure 6.9-5. A Trouble Ticket is Worked

6.9.4.3.1 Beginning Assumptions

none

6.9.4.3.2 Interfaces with Other Subsystems and Segments

none

6.9.4.3.3 Stimulus

A new trouble ticket enters the system.

6.9.4.3.4 Participating Classes From the Object Model

MsTtManager

6.9.4.3.5 Beginning System, Segment and Subsystem State(s)

The MsTtManager is in normal operational state.

6.9.4.3.6 Ending State

A trouble ticket is closed. The MsTtManager is in normal operational state.

6.9.4.3.7 Scenario Description

The support staff member responsible for assigning trouble tickets (Ops Supervisor) receives
notification that a new trouble ticket has entered the system. On examining the detail information,
the support staff member assigns the trouble ticket to a Technician. The trouble ticket status is then
updated to reflect the assignment and the assignee is notified (via e-mail). Additionally
(configurable at each site), the submitter of the trouble ticket is sent an e-mail indicating that their
trouble ticket has been assigned.

Assessing the trouble ticket, the Technician forms a plan to resolve the issue. Adding this
information to the trouble ticket, it is then updated.

When the issue has been resolved, the assignee updates the trouble ticket with any subsequent
information regarding the solution and changes the status to "Solution Proposed." The Trouble
Ticket Review Board will examine the solution and its potential impact on the system. If the
solution is approved, the trouble ticket status is changed to "Implement Solution." The assigned
Technician executes the solution and sets the trouble ticket status to "Solution Implemented." The
Review Board examines the implemented solution and after finding it acceptable, sets the status to
"Closed" while assigning it a closing code (e.g. Bug-Fix, Hardware-Replaced, etc.). The trouble
ticket is modified and the user sent a final e-mail message.

6.9.4.4 A Trouble Ticket is Escalated

This scenario represents the typical sequence of events which occur when a trouble ticket is
escalated. The scenario is shown in Figure 6.9-6.

6.9.4.4.1Beginning Assumptions

none

6-294 305-CD-029-002

SupportStaffMember MsTtManager

NotifySupportStaffMember

EscalationRuleTimerExp

GetQualifiedTickets

ModifyTroubleTicketPriority

TroubleRuleIsEscalated

Figure 6.9-6. A Trouble Ticket is Escalated

6.9.4.4.2 Interfaces with Other Subsystems and Segments

none

6.9.4.4.3 Stimulus

A defined escalation rule is hit for a trouble ticket.

6.9.4.4.4 Participating Classes From the Object Model

MsTtManager

6.9.4.4.5 Beginning System, Segment and Subsystem State(s)

The MsTtManager is in normal operational state.

6.9.4.4.6 Ending State

A trouble ticket is escalated. The MsTtManager is in normal operational state.

6.9.4.4.7 Scenario Description

At a specified time interval, an escalation rule is executed. This escalation rule defines a time based
rule for taking some action on trouble tickets which meets a particular criteria. An example which
would fit this scenario would be a rule to notify a support staff member if a trouble ticket has gone
unassigned for more than 24 hours.

6-295 305-CD-029-002

For those trouble tickets which qualify, the specified action is taken. This action may include any
combination of notifications or updates to the trouble ticket itself. An example could include
raising the priority of a trouble ticket if it has not been resolved within a given time period.

6.9.4.5 A Trouble Ticket is Forwarded

This scenario represents the typical sequence of events which occur when a trouble ticket is
forwarded from a DAAC to the SMC. The scenario is shown in Figure 6.9-7.

6.9.4.5.1 Beginning Assumptions

none

6.9.4.5.2 Interfaces with Other Subsystems and Segments

none

6.9.4.5.3 Stimulus

A user reports a problem to a DAAC via a trouble ticket.

6.9.4.5.4 Participating Classes From the Object Model

MsTtManager

6.9.4.5.5 Beginning System, Segment and Subsystem State(s)

The MsTtManager at both the DAAC and the SMC is normal operational state.

6.9.4.5.6 Ending State

The user is notified of closure of the trouble ticket. The MsTtManager is in normal operational
state.

6.9.4.5.7 Scenario Description

A user at a DAAC reports a problem. When the support staff member assigned to this trouble ticket
examines the detail of the problem, it is traced back to a problem at the SMC (for example a
malfunctioning router). The support staff member at the DAAC indicates that the trouble ticket is
to be forwarded to the SMC for work.

From here, the MsTtManager will submit a new trouble ticket with the identical problem detail
information to the SMC. The submitter information on this trouble ticket will correspond to the
support staff member forwarding the trouble ticket. Additionally, the trouble ticket will indicate
that it originated from the particular DAAC. After the successful entry of forwarded trouble ticket,
the original will be updated to reflect the new, related, trouble ticket entry id. This information
allows the support staff member at the originating DAAC to check the status of the new trouble
ticket at any time.

At the SMC, the new trouble ticket is assigned, worked, and eventually closed as would any other.
When the trouble ticket is closed, the support staff member at the originating DAAC will receive
notification, via e-mail, of that event. At this point, the original trouble ticket can be updated and
closed. When this ticket is closed, the originating user will be notified of the resolution of their
problem.

6-296 305-CD-029-002

MsTtManager MsTtManager
Technician (DAAC Instance) SupportStaffMember (SMC Instance)

(DAAC Instance) (SMC Instance)

6-297
305-C

D
-029-002

User

SubmitTroubleTicket

CreateTroubleTicket

ReturnEntryID

ModifyTroubleTicket

TroubleTicketAssigned

CloseTroubleTicket

ModifyTroubleTicket

NotifySupportStaffMember

CloseTroubleTicket

UpdateTroubleTicket

NotifyUser

RequestForward

DetermineProblemIsAtSMC

NotifyOfAssignedTroubleTicket

ForwardTroubleTicket

Figure 6.9-7. A Trouble Ticket is Forwarded

6.9.5Trouble Ticketing Structure

Table 6.9-1. Trouble Ticketing Components
Component Name COTS/Custom

Trouble Ticketing Management Services COTS (Remedy Action Request System)

Trouble Ticketing HTML Menu Custom

Trouble Ticketing HTML Submission/List Custom

Trouble Ticketing Proxy Agent Custom

6.9.5.1 Trouble Ticketing Management Services CSC

Purpose and Description

This CSC provides the core functionality of the trouble ticketing services. It is implemented by the
Remedy Action Request System software package. It allows for the entry, modification,
administration, and reporting of trouble tickets.

6.9.5.2 Trouble Ticketing HTML Menu CSC

Purpose and Description

This CSC provides an HTML Web Page to registered ECS users that lists the actions which can be
performed on the Trouble Ticketing system through the Web interface. These actions include
submitting a new Trouble Ticket and listing trouble tickets previously opened by the user.

6.9.5.3 Trouble Ticketing HTML Submission/List CSC

Purpose and Description

This CSC provides the interface between the users (those who submit trouble tickets) and the
MsTtManger. It provides a common interface to submit and query the status of a user's trouble
tickets. The functionality listed will be implemented as HTML documents. In addition, this CSC
provides the interface between the MsTtManager (Remedy) and the MsTtHTMLItems. It
translates requests from the HTTPD server and fulfills them using the MsTtManager API
functions.

6.9.5.4 Trouble Ticketing Proxy Agent CSC

Purpose and Description

This CSC provides the interface with the Management Agent Services. It allows for remote
administration and monitoring of the Remedy software package.

6.9.6 Trouble Ticketing Management and Operation

6.9.6.1 System Management Strategy

The Trouble Ticketing Service Management Strategy utilizes the MSS Management Agent model
for its administration. The MsTtProxy will allow the remote startup and shutdown of the Trouble
Ticketing Service via the Management Framework.

6-298 305-CD-029-002

6.9.6.2 Operator Interfaces

The Trouble Ticketing Service provides two user interfaces:

MsTtManager (Remedy Action Request System) - This Motif GUI provides access to all of the
functionality supplied by the software package. This functionality includes trouble ticket entry,
modification, rule definition, administration and reporting. It is through this interface that support
staff members will access TTS.

MsTtHTMLMenu/MsTtHTMLItems - This set of HTML documents provide the primary interface
for users to submit and query trouble tickets.

6.9.6.3 Reports

Trouble Ticket Status Report - This reports indicates the status of a set of trouble tickets based on
a particular criteria (e.g. by date range, assigned-user, status...).

Trouble Ticket Resource Report - This report indicates by resource the number and type of
problems encountered by affected resource.

Trouble Ticket User Report - This report indicates by submitter the number and type of trouble
tickets in the system.

Trouble Ticket Statistics Report - This report indicates for a a particular criteria statistical
information such as mean time to close.

Trouble Ticket Status Report (SMC) - This report provide a summary of the number of tickets by
status and priority across all DAACs.

The above reports are meant to be examples of stock reports provided by the Trouble Ticketing
Service. TTS allows for both extensive customization of the above reports and creation of new
ones. The reporting capabilities include the ability to display not only data contained in the
database but also statistical and correlation functions on that data. These custom reports can be
defined and saved by individual support staff members or made available globally.

6.10 Management Data Access

6.10.1 Management Data Access Overview

The Management Data Access (MDA) Service is responsible for centralizing, processing and
providing access to the information which is logged into the management data log file on each
managed host from various sources via the MSS Management Agent Services. This log data
includes performance, security, fault, accountability, and other ECS application event information.

One of MDA's primary functions is to centralize the log file data at each DAAC. It accomplishes
this by transferring the individual management data log files from each managed host, to the MSS
server, by one of three means. The transfer will occur as established by a predefined and
configurable schedule (time interval or absolute time), by a log size threshold exceeded event, or
on command by the M&O staff. The management log files for each managed host maintain a
common collection of log file records without regard to the mode of the event. Log file records are
transferred to the appropriate mode-identified management database (established upon inception
of the mode), based on the event's mode identifier. The MsMdProcessEvent class handles the
filtering of log file records, ensuring that they are transferred to the appropriate management

6-299 305-CD-029-002

database. Non-mode specific log file records will be logged to all mode specific management
databases. The log files are processed and retained for a period of time before being transferred by
MDA to the ECS Data Archives. MDA's graphical user interface allows the viewing and updating
of all of its schedule configuration parameters.

MDA's graphical user interface also provides the user access to the contents of this log data.
Provided a host, time period, and selection filter information, MDA will retrieve the requested data
and display it using its log file browser. Once displayed, options are given for sorting, additional
filtering, and saving of the data. Additionally, an event chaining capability is provided to enable
the user to select an event and retrieve a list of its ancestor events(transactions). Each event
contains a TransactionID and a ParentTransactionID field to enable a parent-child transaction
linking. Event chaining will link the specified event to its ancestor transaction events for the time
period specified. It should be noted that while this access is typically used to access DAAC (or
SMC/EOC) local log files, it also provides the capability to browse the log data located across sites.

For the purposes of longer term analysis and reporting, MDA will process the management data
log files, loading selected information to the Management RDBMS. The data MDA loads will be
configurable and shall include:

•	 Counter Metrics - maintains a count of the number of times a particular event occurred over
the time period

•	 Duration Metrics - locates the start and ending time for a particular “transaction” and
calculates the duration

•	 Summation/Average Metrics - maintains a sum or average of a value for a particular event
type over the time period.

•	 Detail Events - for a particular event type, loads the detail of each of these events to the
database.

6.10.2 Management Data Access Context

The Management Data Access context diagram is shown in Figure 6.10-1. MDA receives
management requests, (e.g. start up, shutdown) from the Management Agent. Once the requests
are completed an event is logged through the Management Agent. Additionally, MDA and the
Management Agent communicate in order to set the maximum file size for the management log
file. MDA utilizes the CSS file transfer mechanism and ECS Data Archives for log file archival.

6.10.3 Management Data Access Object Model

The Object Model for the Management Data Access Service is shown in Figure 6.10-2.

6.10.3.1 CsFtFTPRelA Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is imported from CSS

6-300 305-CD-029-002

Management
Data Access

Management
DataBase

ECS Data
Archives

Management
Agent

CSS

This System

metric data

event data log files

log files

log file parameters

management responses

log file parameter requests

management requests

File transfer requests

File transfers

event data

Figure 6.10-1. Management Data Access Context Diagram

Attributes:

None

Operations:

None

Associations:

The CsFtFTPRelA class has associations with the following classes:
Class: MsMdManager uses

6-301 305-CD-029-002

(Imported from CSS)

MsMdManager

MsMdConfigurationList

MsMdConfigurationEntry

MsMdSchedule

MsMdScheduleEntry

ManagementRDBMS

COTS

MsMdUserInterface

MsMdArchiveLog

CsFtFTPRelA

MsMdAggregateLogEntry

EcAgEvent

(Imported from MSS/Agent)

MsMdAggregateLogFileList

myMssServerSize

myDBInterval

myArchiveInterval

myDBLoadTime

myArchiveLoadTime

MsMdConfigurationList()

~MsMdConfigurationList()

InsertEntry(MsMdConfigurationEntry*)

RemoveEntry(RWCString&)

GetEntry(RWCStrintg&)

UpdateEntry(MsMdConfigurationEntry*)

binaryStoreSize()

saveGuts(RWFile&)

saveGuts(RWvostream&)

restoreGuts(RWFile&)

restoreGuts(RWvistream&)

myHostName

myNextEntryTime

MsMdScheduleEntry(RWCSting, RWCollectableTime)

MsMdScheduleEntry(RWCollectableTime&)

MsMsScheduleEntry(MsMdScheduleEntry&)

MsMdScheduleEntry()

~MsMdScheduleEntry()

compareTo(RWCollectable*)

GetHostName()

GetNextEntryTime()

myNextDBLoadTime

myNextArchiveLoadTime

myNextEntryLoadTime

MsMdScheduleList()

MsMdScheduleList(MsMdScheduleList&)

~MsMdScheduleList()

GetNextDBLoadTime()

GetNextArchiveLoadTime()

GetNextEntryLoadTime()

InsertEntry(MsMdScheduleEntry*)

RemoveEntry(MsMdScheduleEntry*)

UpdateDBLoadTime(RWCollectableTime&, MsMdConfigurationList*)

UpdateArchiveLoadTime(RWCollectableTime&, MsMdConfigurationList*)

UpdateEntryLoadTime(MsMdScheduleEntry*, MsMdConfigurationList*)

UpdateTime(RWSortedVector&, RWCollectableTime&, RWInteger&)

MsMdAggregateLogFileList()

~MsMdAggregateLogFileList()

InsertHostList(RWCString&, MsMdAggregateLogEntry*)

RemoveLogEntry(RWCString&, MsMdAggregateLogEntry*)

UpdateHostList(RWCString&, MsMdAggregateLogEntry*)

GetHostList(RWCString&)

GetLogEntry(RWCString&, RWTime, RWTime)

myEndTime

myStartTime

myTotalFileCount

myTotalFileSize

myCompression

myDirectoryId

myFileId

myFileSize

myFileTimeStamp

MsMdAggregateLogEntry()

MsMdAggregateLogEntry(RWTime,RWTime,RWCString, RWCString, RWCString, RWInteger,
RWDate)

MsMdAggregateLogEntry(MsMdAggregateLogEntry&)

MsMdAggregateLogEntry(RWTime, RWTime)

~MsMdAggregateLogEntry()

GetStartTime()

GetEndTime()

GetCompression()

GetDirectoryId()

GetFileId()

GetFileSize()

GetFileTimeStamp()

binaryStoreSize()

saveGuts(RWFile&)

saveGuts(RWvostream&)

restoreGuts(RWFile&)

restoreGuts(RWvistream&)

isEqual(RWCollectable*)

MsMdEventList

MsMdEventField

MsMdLogBrowser

BrowseLogFileData()

DisplaySchedule()

DisplayConfiguration()

SortLogFile(sortMethod)

SetFilter(filter)

EditConfiguration(MsMdConfigurationEntry)

SetChainTransID(childID)

~MsMdUserInterface()

MsMdEventList()

~MsMdEventList()

Insert(MsMdEventField*)

myEventType

myGenEvent

myPerfEvent

mySortBy

mySortOrder

myStartTime

myTimeStamp

myCategory

myType

mySeverity

mySubSys

myCsci

myMode

myAppID

myProgID

myProcID

myEndTime

MsMdEventField()

MsMdEventField(MsMdEventField&)

MsMdEventField(MsTAgEventDelimiter&, EcAgEvent&)

MsMdEventField(MsTAgEventDelimiter&. MsAgPerfEvent&)

~MsMdEventField()

SetSortCondition(EcTInt, EcTInt)

SetTimeRange(RWTime&, RWTime&)

GetEventType()

GetGenEvent()

GetPerfEvent()

GetTimeStamp()

GetSortBy()

GetSortOrder()

DisplayEvent()

MatchEvent(MsMdEventField&)

isEqual(RWCollectable*)

isEqualEvent(MsMdEventField*, EcTInt)

compareTo(RWCollectable*)

CompareToEvent(EcTInt&, EcTInt&, EcTInt&)

ParentChildMatch(MsMdEventField&)

MsMdUserInterface()

myHostName

myInterval

mySizeLimit

myAbsoluteTimeList

~MsMdConfigurationEntry()

MsMdConfigurationEntry(RWCString&)

MsMdConfigurationEntry(MsMdConfigurationEntry&)

MsMdConfigurationEntry()

GetHostName()

GetInterval()

GetSizeLimit()

GetAbsoluteTimeList()

binaryStoreSize()

saveGuts(RWFile&)

restoreGuts(RWFile&)

isEqual(RWCollectable*)

saveGuts(RWvostream&)

restoreGuts(RWvistream&)

compareTo(RWCollectable*)

ProcessEvent()

GetSortOrder()

GetSortBy()

GetTimeStamp()

MsMdProcessEvent

myModes

myDBs

ProcessEvent(EcAgEvent&)

GetActiveModes()

OpenMgmtDBs(RWCString&, RWCString&)

GetLogFileData(RWCString, RWTime, RWTime, RWCString)

GetLogFileMaxSize(RWCString)

FindNextLoadCall(MsMdScheduleList*, MsMdConfigurationList*,
MsMdAggregatedLogFileList*)

TransferLogFile(MsMdScheduleList*, MsMdConfigurationList*,
MsMdAggregatedLogFileList*)

FTPLogFile(MsMdAggregateLogFileList*, CsFtFTPRelA*, RWCString&, RWCString&,
RWCString&, RWCString)

ArchiveLogFile(RWCString, RWTime, RWTime, RWCString)

RetrieveArchivedLogFile(RWCString, RWTime, RWTime, RWCString)

ProcessLogFile(RWCString, RWCString)

MsMdManager()

~MsMdManager()

myCondition

myParentTransactionID

myCurrentList

myEventCount

mySortOrderList

mySortByList

myOriginalList

myPreviousList

myEndTime

myStartTime

myMode

myHostInfo

MsMdLogBrowser()

MsMdLogBrowser(MsMdLogBrowser&)

~MsMdLogBrowser()

Filter()

SortList()

SetFilter(MsMdEventField&)

Sort(RWSlistCollectables, RWSlistCollectables, MsMdEventList)

SetSort(RWSlistCollectables, RWSlistCollectables)

SetTime(MsMdEventField*, RWSlistCollectables)

SetEventList()

GetCurrentList()

GetHostInfo()

GetHostName()

GetEventCount()

GetStartTime()

GetCondition()

GetEndTime()

pHostInfo()

pList(MsMdEventList*)

GetMode(RWSlistCollectables, RWCString)

Chain()

[DISTR OBJ]

[Public]

+ : RWInteger

+ : RWInteger

+ : RWInteger

+ : RWSortedVector

+ : RWSortedVector

+

+

+ : EcTVoid

+ : EcTVoid

+ : RWCollectable*

+ : EcTVoid

+ : RWspace

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

- : RWCString

- : RWCollectableTime

+

+

+

+

+

+ : EcTInt

+ : RWCString

+ : RWCollectableTime

- : RWCollectableTime

- : RWCollectableTime

- : RWCollectableTime

+

+

+

+ : RWCollectableTime

+ : RWCollectableTime

+ : RWCollectableTime

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : RWCollectableTime

+

+

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : RWCollectable*

+ : MsMdAggregateLogEntry*

- : RWTime

- : RWTime

- : RWInteger

- : RWInteger

- : RWCString

- : RWCString

- : RWCString

- : RWInteger

- : RWDate

+

+

+

+

+

+ : RWTime

+ : RWTime

+ : RWCString

+ : RWCString

+ : RWCString

+ : RWInteger

+ : RWDate

+ : RWspace

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : RWBoolean

+

+

+

+

+

+

+

+

+

+ : EcTVoid

- : MsTAgEventDelimiter

- : EcAgEvent

- : MsAgPerfEvent

- : EcTInt

- : EcTInt

- : RWTime

- : RWTime

- : EcTInt

- : EcTInt

- : EcTInt

- : EcTInt

- : EcTInt

- : RWCString

- : EcTInt

- : EcTInt

- : EcTInt

- : RWTime

+

+

+

+

+

+ : EcTVoid

+ : EcTVoid

+ : MsTAgEventDelimiter&

+ : EcAgEvent&

+ : MsAgPerfEvent&

+ : RWTime&

+ : EcTInt&

+ : EcTInt&

+ : EcTVoid

+ : RWBoolean

+ : EcTInt

+ : RWBoolean

+ : EcTInt

+ : EcTInt

+ : RwBoolean

- : RWCString

- : RWInteger

- : RWInteger

- : RWSortedVector

+

+

+

+

+ : RWCString

+ : RWInteger

+ : RWInteger

+ : RWSortedVector

+ : RWSpace

+ : EcTVoid

+ : EcTVoid

+ : RWBoolean

+ : EcTVoid

+ : EcTVoid

+

+

+

+

+

- : RWCString&

- : RWCString&

+ : EcTVoid

+ : RWString*

+ : EcTVoid

+

+

+ : EcTVoid

+ : EcTVoid

+

+

+

+

- : MsMdEventField

- : RWCString

- : RWSlistCollectables

- : EcTInt

- : RWSlistCollectables

- : RWSlistCollectables

- : RWSlistCollectables

- : RWSlistCollectables

- : RWTime

- : RWTime

- : RWCString

- : EcAgHostInfo

+

+

+

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : RWSlistCollectables&

+ : EcAgHostInfo&

+ : RWCString&

+ : EcTInt&

+ : RWTime&

+ : MsMdEventField&

+ : RWTime&

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

+ : EcTVoid

manages

accesses

manages

is loaded by

manages

uses

uses

communicates with

manages

6-302
305-C

D
-029-002

Figure 6.10-2. Management Data Access Object Model

6.10.3.2 EcAgEvent Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:Yes

Purpose and Description:

The EcAgEvent defines a distributed object. It provides the capability to dispatch events

for orderly and prompt resolution should events occur. The SNMP protocol provides the

capability to send traps from agent to SNMP manager. But, the traps are not secure and not

reliable. The solution to these problems are using DCE RPC as the transport mechanism for

security reasons and sending the traps from MSS Server to the management framework

locally. The COTS HP OpenView guarantees the delivery of traps local on one host by

using IPC as opposed to UDP. The ECS applications, the EcAgProxy agent, and the

MsAgMonitor of the MsAgSubagent can send event notifications to the MsAgSubagent.

The MsAgSubagent logs every event into MSS log file. Then, if the severity of the event

equals to or is higher than the infoLevel variable, it sends this event notification further to

the MsAgDeputy on the MSS Server which in turn convert the event to an SNMP trap and

send it locally to the management framework.

Attributes:

None

Operations:

None

Associations:

The EcAgEvent class has associations with the following classes:
Class: MsMdManager communicateswith

6.10.3.3 ManagementRDBMS Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Management Data Relational Database (a COTS package).

Attributes:

None

6-303 305-CD-029-002

Operations:

None

Associations:

The ManagementRDBMS class has associations with the following classes:
Class: MsMdProcessEvent isloadedby

6.10.3.4 MsMdAggregateLogEntry Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents an aggregate of the log file data for a single managed host over a given

time period. The data is held in these files until it is processed for the Management

RDBMS and archived.

Attributes:

myCompression - This attribute represents the flag to indicate if files have been

compresssed prior to archival.

Data Type:RWCString

Privilege:Private

Default Value:

myDirectoryId - This attribute represents the path and address of the directory where the

files are located.

Data Type:RWCString

Privilege:Private

Default Value:

myEndTime - This attribute represents the end of the time period covered by the

aggregate.

Data Type:RWTime

Privilege:Private

Default Value:

myFileId - This attribute represents the name of the files that are to archived (repeat for

each file to be archived).

Data Type:RWCString

Privilege:Private

Default Value:

6-304 305-CD-029-002

myFileSize - This attribute represents the size of the individual file to be archived, in bytes.

Data Type:RWInteger

Privilege:Private

Default Value:

myFileTimeStamp - This attribute represents the date and time the file was created.

Data Type:RWDate

Privilege:Private

Default Value:

myStartTime - This attribute represents the starting time of the time period covered by the

aggregate.

Data Type:RWTime

Privilege:Private

Default Value:

myTotalFileCount - This attribute represents the total number of files to be archived.

Data Type:RWInteger

Privilege:Private

Default Value:

myTotalFileSize - This attribute represents the sum of the file sizes in bytes.

Data Type:RWInteger

Privilege:Private

Default Value:

Operations:

GetCompression - This operation returns whether the file is compressed or not.

Arguments:

Return Type:RWCString

Privilege:Public

GetDirectoryId - This operation returns the string value of the directory ID.

Arguments:

Return Type:RWCString

Privilege:Public

GetEndTime - This operation returns the ending time.

Arguments:

Return Type:RWTime

Privilege:Public

6-305 305-CD-029-002

GetFileId - This operation returns the value of the file ID.

Arguments:

Return Type:RWCString

Privilege:Public

GetFileSize - This operation returns the size of the file.

Arguments:

Return Type:RWInteger

Privilege:Public

GetFileTimeStamp - This operation returns the file time stamp.

Arguments:

Return Type:RWDate

Privilege:Public

GetStartTime - This operation returns the starting time.

Arguments:

Return Type:RWTime

Privilege:Public

MsMdAggregateLogEntry - This operation serves as the copy constructor for the

MsMdAggregateLogEntry.

Arguments:MsMdAggregateLogEntry&

Return Type:Void

Privilege:Public

MsMdAggregateLogEntry - This operation serves as the default constructor for the

MsMdAggregateLogEntry class.

Arguments:

Return Type:Void

Privilege:Public

MsMdAggregateLogEntry - This operation is a set constructor.

Arguments:RWTime,RWTime,RWCString, RWCString, RWCString, RWInteger,

RWDate

Return Type:Void

Privilege:Public

MsMdAggregateLogEntry - This operation serves as a constructor which accepts start

and end time parameters.

Arguments:RWTime, RWTime

Return Type:Void

Privilege:Public

binaryStoreSize - This operation returns the number of bytes used by the virtual operation

6-306 305-CD-029-002

saveGuts(RWFile&) to store an object.

Arguments:

Return Type:RWspace

Privilege:Public

isEqual - This operation returns TRUE if the collectable object matches the starting time.

Arguments:RWCollectable*

Return Type:RWBoolean

Privilege:Public

restoreGuts - This operation reads an object's state from a binary file, using class RWFile,

replacing the previous state.

Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

restoreGuts - This operation reads an object's state from a virtual stream using class

RWFile, replacing the previous state.

Arguments:RWvistream&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a binary file, using class RWFile.

Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a virtual stream using class RWFile.

Arguments:RWvostream&

Return Type:EcTVoid

Privilege:Public

~MsMdAggregateLogEntry - This operation serves as the default destructor for the

MsMdAggregateLogEntry class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdAggregateLogEntry class has associations with the following classes:
MsMdAggregateLogFileList (Aggregation)

6-307 305-CD-029-002

6.10.3.5 MsMdAggregateLogFileList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents a list aggregate log files for the hosts at a single DAAC.

Attributes:

None

Operations:

GetHostList - This operation gets the host log.

Arguments:RWCString&

Return Type:RWCollectable*

Privilege:Public

GetLogEntry - This operation gets the log entry.

Arguments:RWCString&, RWTime, RWTime

Return Type:MsMdAggregateLogEntry*

Privilege:Public

InsertHostList - This operation inserts the new log entry for the new host.

Arguments:RWCString&, MsMdAggregateLogEntry*

Return Type:EcTVoid

Privilege:Public

MsMdAggregateLogFileList
Arguments:

Return Type:Void

Privilege:Public

RemoveLogEntry - This operation removes the log entry from the found host log.

Arguments:RWCString&, MsMdAggregateLogEntry*

Return Type:EcTVoid

Privilege:Public

UpdateHostList - This operation updates the log entry by adding a log entry to the found

host log.

Arguments:RWCString&, MsMdAggregateLogEntry*

Return Type:EcTVoid

Privilege:Public

6-308 305-CD-029-002

~MsMdAggregateLogFileList
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsMdAggregateLogFileList class has associations with the following classes:
Class: MsMdManager manages

6.10.3.6 MsMdArchiveLog Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The MsMdArchiveLog class has associations with the following classes:
Class: MsMdProcessEvent uses

6.10.3.7 MsMdConfigurationEntry Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the configuration parameters for a single managed MSS host logfile.

Attributes:

myAbsoluteTimeList - the list of absolute time at whcih the log file is to be transferred to

the MSS Server.

Data Type:RWSortedVector

Privilege:Private

Default Value:

6-309 305-CD-029-002

myHostName - the name of the host to which this entry applies

Data Type:RWCString

Privilege:Private

Default Value:

myInterval - the interval in minutes the log file is to be transfered

Data Type:RWInteger

Privilege:Private

Default Value:

mySizeLimit - the size threshold at which the log file is to be transfered

Data Type:RWInteger

Privilege:Private

Default Value:

Operations:

GetAbsoluteTimeList - This operation returns the absoluteTimeList.

Arguments:

Return Type:RWSortedVector

Privilege:Public

GetHostName - This operation returns the hostName.

Arguments:

Return Type:RWCString

Privilege:Public

GetInterval - This operation returns the interval.

Arguments:

Return Type:RWInteger

Privilege:Public

GetSizeLimit - This operation returns the sizeLimit.

Arguments:

Return Type:RWInteger

Privilege:Public

GetSortBy
Arguments:
Return Type:Void
Privilege:Public

GetSortOrder
Arguments:

6-310 305-CD-029-002

Return Type:Void
Privilege:Public

GetTimeStamp
Arguments:

Return Type:Void

Privilege:Public

MsMdConfigurationEntry - constructor with only host name defined.

Arguments:RWCString&

Return Type:Void

Privilege:Public

MsMdConfigurationEntry - copy constructor.

Arguments:MsMdConfigurationEntry&

Return Type:Void

Privilege:Public

MsMdConfigurationEntry - default constructor.

Arguments:

Return Type:Void

Privilege:Public

ProcessEvent
Arguments:

Return Type:Void

Privilege:Public

binaryStoreSize - This operation returns the number of bytes used by the virtual function

saveGutes(RWFile&) to store an object.

Arguments:

Return Type:RWSpace

Privilege:Public

compareTo
Arguments:RWCollectable*

Return Type:Void

Privilege:Public

isEqual - This operation will return TRUE if collectable object "matches" given objects.

Arguments:RWCollectable*

Return Type:RWBoolean

Privilege:Public

restoreGuts - This operation reads an object's state from a binary file, using class RWFile,

6-311 305-CD-029-002

replacing the previous state.

Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

restoreGuts - his operation reads an object's state from a virtual stream.

Arguments:RWvistream&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a binary file, using class RWFile.

Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a virtual stream.

Arguments:RWvostream&

Return Type:EcTVoid

Privilege:Public

~MsMdConfigurationEntry - destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdConfigurationEntry class has associations with the following classes:
MsMdConfigurationList (Aggregation)

6.10.3.8 MsMdConfigurationList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the configuration of the MsMdManager.

Attributes:

myArchiveInterval - the interval when the log files are to be transferred to the

Management Database.

Data Type:RWInteger

Privilege:Public

6-312 305-CD-029-002

Default Value:

myArchiveLoadTime - the time of day the aggregate log files should be processed and

load to ECS Data Archive.

Data Type:RWSortedVector

Privilege:Public

Default Value:

myDBInterval - the interval when the log files are to be transferred.

Data Type:RWInteger

Privilege:Public

Default Value:

myDBLoadTime
Data Type:RWSortedVector

Privilege:Public

Default Value:

myMssServerSize - the size limit of the MSS Server.

Data Type:RWInteger

Privilege:Public

Default Value:

Operations:

GetEntry - This operation will get a MsMdConfigurationEntry for a given host name.

Arguments:RWCStrintg&

Return Type:RWCollectable*

Privilege:Public

InsertEntry - This operation will add a MsMdConfigurationEntry to the current

configuration list.

Arguments:MsMdConfigurationEntry*

Return Type:EcTVoid

Privilege:Public

MsMdConfigurationList - default constructor.

Arguments:

Return Type:Void

Privilege:Public

RemoveEntry - This operation will remove a MsMdConfigurationEntry from the

current configuration list.

Arguments:RWCString&

6-313 305-CD-029-002

Return Type:EcTVoid
Privilege:Public

UpdateEntry - This operation will change a MsMdConfigurationEntry to the current
configuration.

Arguments:MsMdConfigurationEntry*
Return Type:EcTVoid
Privilege:Public

binaryStoreSize - This operation returns the number of bytes used by the virtual function

saveGutes(RWFile&) to store an object.

Arguments:

Return Type:RWspace

Privilege:Public

restoreGuts - This operation reads an object's state from a binary file, using class RWFile,

replacing the previous state.

Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

restoreGuts - This operation reads an object's state from a virtual stream.

Arguments:RWvistream&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a binary file, using class RWFile.

Arguments:RWFile&

Return Type:EcTVoid

Privilege:Public

saveGuts - This operation writes an object's state to a virtual stream.

Arguments:RWvostream&

Return Type:EcTVoid

Privilege:Public

~MsMdConfigurationList - destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

6-314 305-CD-029-002

The MsMdConfigurationList class has associations with the following classes:
Class: MsMdManager manages

6.10.3.9 MsMdEventField Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents a description of an event. It also recognizes the different types of

events and their filtered conditions.

Attributes:

myAppID - This attribute represents the application ID.

Data Type:EcTInt

Privilege:Private

Default Value:

myCategory - This attribute represents the category of the event.

Data Type:EcTInt

Privilege:Private

Default Value:

myCsci - This attribute represents the CSCI of the event.

Data Type:EcTInt

Privilege:Private

Default Value:

myEndTime - This attribute represents the end time.

Data Type:RWTime

Privilege:Private

Default Value:

myEventType - This attribute is an enumerated type for events.

Data Type:MsTAgEventDelimiter

Privilege:Private

Default Value:

myGenEvent - This attribute defines a general event.

Data Type:EcAgEvent

Privilege:Private

Default Value:

myMode - This attribute represents the mode of the event.

6-315 305-CD-029-002

Data Type:RWCString

Privilege:Private

Default Value:

myPerfEvent - This attribute represents a performance event.

Data Type:MsAgPerfEvent

Privilege:Private

Default Value:

myProcID - This attribute represents the process ID.

Data Type:EcTInt

Privilege:Private

Default Value:

myProgID - This attribute represents the program ID.

Data Type:EcTInt

Privilege:Private

Default Value:

mySeverity - This attribute represents the event severity level.

Data Type:EcTInt

Privilege:Private

Default Value:

mySortBy - This attribute represents the value decides sorting.

Data Type:EcTInt

Privilege:Private

Default Value:

mySortOrder - This attribute represents a value that determines sorting order.

Data Type:EcTInt

Privilege:Private

Default Value:

myStartTime - This attribute represents the start time.

Data Type:RWTime

Privilege:Private

Default Value:

mySubSys - This attribute represents the subsystem of the event.

Data Type:EcTInt

Privilege:Private

Default Value:

myTimeStamp - This attribute represents the time stamp of the event.

6-316 305-CD-029-002

Data Type:RWTime

Privilege:Private

Default Value:

myType - This attribute represents the type of the event.

Data Type:EcTInt

Privilege:Private

Default Value:

Operations:

CompareToEvent - This operation compares two event attributes and sorts them.

Arguments:EcTInt&, EcTInt&, EcTInt&

Return Type:EcTInt

Privilege:Public

DisplayEvent - This operation displays an event.

Arguments:

Return Type:EcTVoid

Privilege:Public

GetEventType - This operation returns the event type.

Arguments:

Return Type:MsTAgEventDelimiter&

Privilege:Public

GetGenEvent - This operation returns the general event.

Arguments:

Return Type:EcAgEvent&

Privilege:Public

GetPerfEvent - This operation returns the performance event.

Arguments:

Return Type:MsAgPerfEvent&

Privilege:Public

GetSortBy - This operation returns the sort by field specified.

Arguments:

Return Type:EcTInt&

Privilege:Public

GetSortOrder - The operation returns the sort order.

Arguments:

Return Type:EcTInt&

6-317 305-CD-029-002

Privilege:Public

GetTimeStamp - This operation returns the time stamp.

Arguments:

Return Type:RWTime&

Privilege:Public

MatchEvent - This operation matches an event.

Arguments:MsMdEventField&

Return Type:RWBoolean

Privilege:Public

MsMdEventField - This operation serves as the default constructor for the

MsMdEventField

Arguments:

Return Type:Void

Privilege:Public

MsMdEventField - This operation serves as the copy constructor for the MsMdEventField

class.

Arguments:MsMdEventField&

Return Type:Void

Privilege:Public

MsMdEventField - This operation serves as the general event constructor for

MsMdEventField class.

Arguments:MsTAgEventDelimiter&, EcAgEvent&

Return Type:Void

Privilege:Public

MsMdEventField - This operation serves as the performance event constructor.

Arguments:MsTAgEventDelimiter&. MsAgPerfEvent&

Return Type:Void

Privilege:Public

ParentChildMatch - This operation compares the transactionID of the current event to the

parentTransactioID of the event to be chained. A boolean value is returned to indicate

whether or not a match exists.

Arguments:MsMdEventField&

Return Type:RwBoolean

Privilege:Public

SetSortCondition - This operation sets the sorting condition.

Arguments:EcTInt, EcTInt

Return Type:EcTVoid

6-318 305-CD-029-002

Privilege:Public

SetTimeRange - This operation sets the start and stop time.

Arguments:RWTime&, RWTime&

Return Type:EcTVoid

Privilege:Public

compareTo - This operation compares two events and sorts them.

Arguments:RWCollectable*

Return Type:EcTInt

Privilege:Public

isEqual - This operation returns TRUE if collectable object "matches" the given objects.

Arguments:RWCollectable*

Return Type:EcTInt

Privilege:Public

isEqualEvent - This operation returns true if event matches given objects.

Arguments:MsMdEventField*, EcTInt

Return Type:RWBoolean

Privilege:Public

~MsMdEventField - this operation serves as the default destructor for the

MsMdEventField class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdEventField class has associations with the following classes:
MsMdEventList (Aggregation)

6.10.3.10 MsMdEventList Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This operation represents the collection of conditional events for metrics that are to be

loaded to the ManagementRDBMS.

Attributes:

6-319 305-CD-029-002

None

Operations:

Insert - This operation inserts an event into an event list.

Arguments:MsMdEventField*

Return Type:EcTVoid

Privilege:Public

MsMdEventList - This operation serves as the default constructor for the MsMdEventList

class.

Arguments:

Return Type:Void

Privilege:Public

~MsMdEventList - This operation serves as the default destructor for the MsMdEventList

class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdEventList class has associations with the following classes:
Class: MsMdLogBrowser
Class: MsMdProcessEvent
Class: MsMdManager manages

6.10.3.11 MsMdLogBrowser Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents a collection of conditional events for metrics that are to be loaded to

the ManagementRDBMS.

Attributes:

myCondition - This attribute is the filter condition for an event.

Data Type:MsMdEventField

Privilege:Private

Default Value:

6-320 305-CD-029-002

myCurrentList - This attribute represents the top of the stack.

Data Type:RWSlistCollectables

Privilege:Private

Default Value:

myEndTime - This attribute represents the end time of the data being browsed.

Data Type:RWTime

Privilege:Private

Default Value:

myEventCount - This attribute represents the total number of events.

Data Type:EcTInt

Privilege:Private

Default Value:

myHostInfo - This attribute contains information about the host.

Data Type:EcAgHostInfo

Privilege:Private

Default Value:

myMode - This attribute represents the event's mode. It is used for filtering or sorting.

Data Type:RWCString

Privilege:Private

Default Value:

myOriginalList - This attribute represents the original event list.

Data Type:RWSlistCollectables

Privilege:Private

Default Value:

myParentTransactionID - This attribute represents the ParentTransactionID of the event

which is being chained.

Data Type:RWCString

Privilege:Private

Default Value:

myPreviousList - This attribute represents the previous event list.

Data Type:RWSlistCollectables

Privilege:Private

Default Value:

mySortByList - This attribute defines the event field to be sorted.

Data Type:RWSlistCollectables

Privilege:Private

Default Value:

6-321 305-CD-029-002

mySortOrderList
Data Type:RWSlistCollectables

Privilege:Private

Default Value:

myStartTime - This attribute is the start time of the data being browsed.

Data Type:RWTime

Privilege:Private

Default Value:

Operations:

Chain - This operation will traverse a list of events to determine if a parent-child

relationship exists. If a match exists, the event is inserted into a list of chained events, and

a retraversal occurs to seek additional ancestral transaction events. When no parent-child

match is found, the operation halts.

Arguments:

Return Type:EcTVoid

Privilege:Public

Filter - This operation filters the event list based on user defined criteria.

Arguments:

Return Type:EcTVoid

Privilege:Public

GetCondition - This operation returns the event condition.

Arguments:

Return Type:MsMdEventField&

Privilege:Public

GetCurrentList - This operation returns the top of a stack.

Arguments:

Return Type:RWSlistCollectables&

Privilege:Public

GetEndTime - This operation returns the end time.

Arguments:

Return Type:RWTime&

Privilege:Public

GetEventCount - This operation returns the number of events in the list.

Arguments:

Return Type:EcTInt&

6-322 305-CD-029-002

Privilege:Public

GetHostInfo - This operation returns the host information.

Arguments:

Return Type:EcAgHostInfo&

Privilege:Public

GetHostName - This operation returns the host name.

Arguments:

Return Type:RWCString&

Privilege:Public

GetMode - This operation will return the events of a given mode.

Arguments:RWSlistCollectables, RWCString

Return Type:EcTVoid

Privilege:Public

GetStartTime - This operation returns the start time.

Arguments:

Return Type:RWTime&

Privilege:Public

MsMdLogBrowser - This operation serves as the constructor for the MsMdLogBrowser

class.

Arguments:

Return Type:Void

Privilege:Public

MsMdLogBrowser - This operation serves as the copy constructor for the

MsMdLogBrowser class.

Arguments:MsMdLogBrowser&

Return Type:Void

Privilege:Public

SetEventList - This operation returns an event list.

Arguments:

Return Type:EcTVoid

Privilege:Public

SetFilter - This operation sets filtering attributes.

Arguments:MsMdEventField&

Return Type:EcTVoid

Privilege:Public

SetSort - This operation sets sorting attributes.

6-323 305-CD-029-002

Arguments:RWSlistCollectables, RWSlistCollectables

Return Type:EcTVoid

Privilege:Public

SetTime - This operation sets the starting time attribute.

Arguments:MsMdEventField*, RWSlistCollectables

Return Type:EcTVoid

Privilege:Public

Sort - This operation sorts the event list.

Arguments:RWSlistCollectables, RWSlistCollectables, MsMdEventList

Return Type:EcTVoid

Privilege:Public

SortList
Arguments:

Return Type:EcTVoid

Privilege:Public

pHostInfo - This operation returns host information such as cell name, hostname, IP

address, OS name, OS major version, OS minor version, Os rev, and OS maint level.

Arguments:

Return Type:EcTVoid

Privilege:Public

pList - This operation displays the events in a list.

Arguments:MsMdEventList*

Return Type:EcTVoid

Privilege:Public

~MsMdLogBrowser - this operation serves as the default destructor for the

MsMdLogBrowser class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdLogBrowser class has associations with the following classes:
Class: MsMdEventList
Class: MsMdUserInterface

6-324 305-CD-029-002

6.10.3.12 MsMdManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class encapsulates the functionality required to centralize and process the ECS log

files.

Attributes:

None

Operations:

FTPLogFile
Arguments:MsMdAggregateLogFileList*, CsFtFTPRelA*, RWCString&, RWCString&,

RWCString&, RWCString

Return Type:Void

Privilege:Public

FindNextLoadCall
Arguments:MsMdScheduleList*, MsMdConfigurationList*,

MsMdAggregatedLogFileList*

Return Type:EcTVoid

Privilege:Public

GetLogFileData
Arguments:RWCString, RWTime, RWTime, RWCString

Return Type:Void

Privilege:Public

GetLogFileMaxSize
Arguments:RWCString

Return Type:Void

Privilege:Public

MsMdManager - default constructor.

Arguments:

Return Type:Void

Privilege:Public

ProcessLogFile
Arguments:RWCString, RWCString

6-325 305-CD-029-002

Return Type:Void

Privilege:Public

TransferLogFile - This operaton transfers all the log files from a managed host to the MSS

Server at a given pacific time, appending it to the correct MsMdAggregateLogFile.

Arguments:MsMdScheduleList*, MsMdConfigurationList*,

MsMdAggregatedLogFileList*

Return Type:EcTVoid

Privilege:Public

~MsMdManager
Arguments:
Return Type:Void
Privilege:Public

Associations:

The MsMdManager class has associations with the following classes:
Class: MsMdProcessEvent
Class: MsMdUserInterface accesses
Class: EcAgEvent communicateswith
Class: MsMdAggregateLogFileList manages
Class: MsMdConfigurationList manages
Class: MsMdEventList manages
Class: MsMdSchedule manages
Class: CsFtFTPRelA uses

6.10.3.13 MsMdProcessEvent Class

Parent Class:Not Applicable

Attributes:

myDBs
Data Type:RWCString&
Privilege:Private
Default Value:

myModes
Data Type:RWCString&
Privilege:Private
Default Value:

6-326 305-CD-029-002

Operations:

ArchiveLogFile
Arguments:RWCString, RWTime, RWTime, RWCString

GetActiveModes
Arguments:

Return Type:RWString*

Privilege:Public

OpenMgmtDBs
Arguments:RWCString&, RWCString&

Return Type:EcTVoid

Privilege:Public

ProcessEvent
Arguments:EcAgEvent&
Return Type:EcTVoid
Privilege:Public

RetrieveArchivedLogFile
Arguments:RWCString, RWTime, RWTime, RWCString

Associations:

The MsMdProcessEvent class has associations with the following classes:
Class: MsMdEventList
Class: MsMdManager
Class: ManagementRDBMS isloadedby
Class: MsMdArchiveLog uses

6.10.3.14 MsMdSchedule Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the current schedule for MSS logfile transfers.

Attributes:

myNextArchiveLoadTime - the list of time at which the log file is to be transferred to the

ECS Data Archive.

Data Type:RWCollectableTime

6-327 305-CD-029-002

Privilege:Private

Default Value:

myNextDBLoadTime - the list of time at which the log file is to be transferred to the

Management Data Base.

Data Type:RWCollectableTime

Privilege:Private

Default Value:

myNextEntryLoadTime - the list of time at which the log file is to be transferred to the

MSS Server.

Data Type:RWCollectableTime

Privilege:Private

Default Value:

Operations:

GetNextArchiveLoadTime - This operation will update a scheduled time of loading to the

ECS Data Archive.

Arguments:

Return Type:RWCollectableTime

Privilege:Public

GetNextDBLoadTime - This operation will update a scheduled time of loading to the

Management Data Base.

Arguments:

Return Type:RWCollectableTime

Privilege:Public

GetNextEntryLoadTime - This operation will return a scheduled time of loading to the

MSS Server.

Arguments:

Return Type:RWCollectableTime

Privilege:Public

InsertEntry - This operation will add a MsMdConfigurationEntry to the current

configuration list.

Arguments:MsMdScheduleEntry*

Return Type:EcTVoid

Privilege:Public

MsMdScheduleList - This operation serves as the default constructor.

Arguments:

Return Type:Void

6-328 305-CD-029-002

Privilege:Public

MsMdScheduleList - This operation serves as the copy constructor.

Arguments:MsMdScheduleList&

Return Type:Void

Privilege:Public

RemoveEntry - This operation will remove a MsMdConfigurationEntry from the

current configuration list.

Arguments:MsMdScheduleEntry*

Return Type:EcTVoid

Privilege:Public

UpdateArchiveLoadTime - This operation will update a scheduled time of loading to the

ECS Data Archive.

Arguments:RWCollectableTime&, MsMdConfigurationList*

Return Type:EcTVoid

Privilege:Public

UpdateDBLoadTime - This operation will update a scheduled time of loading to the

Management Data base.

Arguments:RWCollectableTime&, MsMdConfigurationList*

Return Type:EcTVoid

Privilege:Public

UpdateEntryLoadTime - This operation will update a next scheduled time for a host.

Arguments:MsMdScheduleEntry*, MsMdConfigurationList*

Return Type:EcTVoid

Privilege:Public

UpdateTime - This operation will return an updated time.

Arguments:RWSortedVector&, RWCollectableTime&, RWInteger&

Return Type:RWCollectableTime

Privilege:Public

~MsMdScheduleList - This operation serves as the default destructor.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdSchedule class has associations with the following classes:
Class: MsMdManager manages

6-329 305-CD-029-002

6.10.3.15 MsMdScheduleEntry Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the schedule entry for a single managed MSS host logfile.

Attributes:

myHostName - This attribute represents the hostname to which the schedule entry applies.

Data Type:RWCString

Privilege:Private

Default Value:

myNextEntryTime - the next scheduled time for this log file to be transferred.

Data Type:RWCollectableTime

Privilege:Private

Default Value:

Operations:

GetHostName - This operation will return the name of the host.

Arguments:

Return Type:RWCString

Privilege:Public

GetNextEntryTime - This operation will return the next time of the applied host.

Arguments:

Return Type:RWCollectableTime

Privilege:Public

MsMdScheduleEntry - this operation serves as the constructor for the

MsMdScheduleEntry class..

Arguments:RWCSting, RWCollectableTime

Return Type:Void

Privilege:Public

MsMdScheduleEntry - This operation serves as the constructor with only the time.

Arguments:RWCollectableTime&

Return Type:Void

Privilege:Public

MsMdScheduleEntry - This operation serves as the default constructor for the

6-330 305-CD-029-002

MsMdScheduleEntry class.

Arguments:

Return Type:Void

Privilege:Public

MsMsScheduleEntry - This operation serves as the copy constructor for the

MsMdScheduleEntry class.

Arguments:MsMdScheduleEntry&

Return Type:Void

Privilege:Public

compareTo - This operation compare two times to sort the time in a collection.

Arguments:RWCollectable*

Return Type:EcTInt

Privilege:Public

~MsMdScheduleEntry - This operation serves as the default destructor for the

MsMdScheduleEntry class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdScheduleEntry class has associations with the following classes:
MsMdSchedule (Aggregation)

6.10.3.16 MsMdUserInterface Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents the user interface to the Management Data Access Services. From this

interface, MSS logfile data can be browsed, sorted, and filtered. Additionally this interface

provides the functionality to update the MDA configuration parameters.

Attributes:

None

Operations:

6-331 305-CD-029-002

BrowseLogFileData - This allows a user to retrieve and browse data based on the current

filter.

Arguments:

Return Type:Void

Privilege:Public

PDL:MsMdUserInferface::BrowseLogFileData ()

{

// obtain values from user interface

Host = ::GetHostName

StartDate = ::GetStartDate

StopDate = ::GetStopDate

// display data to user screen
::Display (MsMdManager::GetLogFileData (HostName, StartDate, StopData)

}

DisplayConfiguration - This method provides the ability to edit the current configuration

parameters for MDA.

Arguments:

Return Type:Void

Privilege:Public

PDL:MsMdUserInterface::DisplayConfiguration ()

{

// get each Configuration item

ConfigItem = MsMdConfigurationList::GetNextEntry (NULL)

while (ConfigItem is a ligal item) {

// display the configuration item to the screen
::Display (ConfigItem)

ConfigItem = MsMdConfigurationList::GetNextEntry (ConfigItem)
}

// if the user wants to modify a configuration item, then call
on modify: call MsMdUserInterface::EditConfiguration (SelectedConfiguration)

}

DisplaySchedule - This method displays the current schedule for log file transfers.

Arguments:

Return Type:Void

Privilege:Public

PDL:MsMdUSerInferface::DisplaySchedule ()

{

// retrieve all the schefule entries

ScheduleEntry = MsMdSchedule::GetNextEntry (NULL)

6-332 305-CD-029-002

 while (ScheduleEntry is legal entry) {

// display the schedule entry
::DisplayScheduleEntry (ScheduleEntry)

ScheduleEntry = MsMdSchedule::GetNextEntry (ScheduleEntry)

}

}

EditConfiguration - This operation allows the configuration of log transfers.

Arguments:MsMdConfigurationEntry

Return Type:Void

Privilege:Public

MsMdUserInterface - This operation represents the default constructor for the class

MsMdUserInterface.

Arguments:

SetChainTransID - This operation allows an event transactionID to be entered via the user

interface for the purpose of event chaining.

Arguments:childID

SetFilter - This operation allows a user to set a filter.

Arguments:filter

Return Type:Void

Privilege:Public

SortLogFile -

Arguments:sortMethod

Return Type:Void

Privilege:Public

~MsMdUserInterface - This operation represents the default constructor for the

MsMdUserInterface class.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsMdUserInterface class has associations with the following classes:
Class: MsMdLogBrowser
Class: MsMdManager accesses

6-333 305-CD-029-002

6.10.4 Management Data Access Dynamic Model

6.10.4.1 User Browses Logfile Data

Figure 6.10-3 contains the event trace diagram for the browse log scenario.

6.10.4.1.1 Beginning Assumptions

None.

6.10.4.1.2 Interfaces with Other Subsystems and Segments

CSS (via CsFtFTPRelA)

6.10.4.1.3 Stimulus

The user requests to browse log file data from the MDA user interface.

6.10.4.1.4 Participating Classes From the Object Model

MsMdUserInterface

MsMdManager

MsMdAggregateLogFileList

MsMdAggregateLogEntry

CsFtFTPRelA

MsMdArchiveLog

6.10.4.1.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal, steady state.

6.10.4.1.6 Ending State

The user is provided the log file browser and the requested data.

6.10.4.1.7 Scenario Description

From the MDA user interface, a user requests to browse log file data. This request specifies a time
period, host name and filter. The MsMdManager examines the request criteria to calculate the
location of the data. In this scenario, the time period specified is assumed to be large enough to
require that data be extracted from: the ECS Data Archives, MSS server, and a managed host. It
should be noted that this situation is unlikely, and is demonstrated in this scenario purely to
illustrate the method for retrieving data from all sources.

To retrieve the data from archive, a request is made to the ECS Data Archives. When the data has
been returned, the required filter is applied to the data. Next the data from the managed host is
transferred to the MSS server. This data is appended to the MsMdAggregateLogFile for the
particular host. Finally, the same MsMdAggregateLogFile is read and the proper data filtered out.
The union of this data and that retrieved from the archives is returned to the MDA user interface.

At this point the interface allows the user to request additional sorting and filtering on the retrieved
data.

6-334 305-CD-029-002

User MsMdUserInterface MsMdManager MsMdAggregateLogFileList MsMdAggregateLogEntry CsFtFTPRelA

BrowseLogFileData()

SetFilter()

SortLogFile()

ReturnData

GetLogFileData(RWCString,RWTime,RWTime)

RetrieveArchivedLogFile(RWCString,RWTime,RWTime)

TransferLogFile(MsMdScheduleList*,MsMdConfigurationList,...)

restoreGuts(RWFile&)

GetLogEntry(RWCString&,RWTime,RWTime)

MsMdArchiveLog

6-335
305-C

D
-029-002

Figure 6.10-3. User Browses Log File Data

6.10.5 Management Data Access Dynamic Model

6.10.5.1 User Chains Events

Figure 6.10-4 contains the event trace diagram for the User Chains Logfile Data scenario.

6.10.5.1.1 Beginning Assumptions

None.

6.10.5.1.2 Interfaces with Other Subsystems and Segments

CSS (via CsFtFTPRelA)

6.10.5.1.3 Stimulus

The user requests to chain log file data from the MDA user interface.

6.10.5.1.4 Participating Classes From the Object Model

MsMdUserInterface

MsMdManager

MsMdAggregateLogFileList

MsMdAggregateLogEntry

MsMdLogBrowser

CsFtFTPRelA

MsMdArchiveLog

6.10.5.1.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal, steady state.

6.10.5.1.6 Ending State

The user is provided the log file browser and the requested data.

6.10.5.1.7 Scenario Description

From the MDA user interface, a user requests to browse log file data. This request specifies a time
period, host name and filter. The MsMdManager examines the request criteria to calculate the
location of the data. In this scenario, the time period specified is assumed to be large enough to
require that data be extracted from: the ECS Data Archives, MSS server, and a managed host. It
should be noted that this situation is unlikely, and is demonstrated in this scenario purely to
illustrate the method for retrieving data from all sources.

To retrieve the data from archive, a request is made to the ECS Data Archives. When the data has
been returned, the required filter is applied to the data. Next the data from the managed host is
transferred to the MSS server. This data is appended to the MsMdAggregateLogFile for the
particular host. Finally, the same MsMdAggregateLogFile is read and the proper data filtered out.
The union of this data and that retrieved from the archives is returned to the MDA user interface.

6-336 305-CD-029-002

User MsMdLogBrowser MsMdUserInterface MsMdManager MsMdAggregateLogFileList MsMdAggregateLogEntry CsFtFTPRelA MsMdArchiveLog

GetLogEntry(RWCSTtring,RWTime,RWTime)

TransferLogFile(ScheduleList*,MsMdConfigurationList*,...)

restoreGuts(RWFile&)

ChainEvents()

Return Data

RetrieveArchivedLogFile(RWCString,RWTime,RWTime)

BrowseLogFileData()

GetLogFileData()RWCString,RWTime,RWTime)

SetChainTransID(RWString)

6-337
305-C

D
-029-002

Figure 6.10-4. User Chains Logfile Data

At this point the interface allows the user to chain events by inputting an event TransactionID. The
event chain sequence is computed and returned to the user interface.

6.10.6 Management Data Access Dynamic Model

6.10.6.1 MSS Logfile is Processed

Figure 6.10-5 contains the event trace diagram for the Process Logfile scenario..

6.10.6.1.1 Beginning Assumptions

None.

6.10.6.1.2 Interfaces with Other Subsystems and Segments

CSS (via CsFtFTPRelA)

6.10.6.1.3 Stimulus

An MSS logfile requires processing and transfer to the management database.

6.10.6.1.4 Participating Classes From the Object Model

MsMdManager

MsMdAggregateLogFileList

MsMdAggregateLogEntry

MsMdEventList

CsFtFTPRelA

MsMdArchiveLog

ManagementRDBMS

6.10.6.1.5 Beginning System, Segment and Subsystem State(s)

The system, segment and the subsystem are in a normal, steady state.

6.10.6.1.6 Ending State

The MSS logfile on a managed host is processed and transferred to the management database..

6.10.6.1.7 Scenario Description

An MSS logfile is scheduled to be processed and transferred to the management database. The
MsMdManager utilizes the MsMdAggregateLogfileList to determine location of the data. The
MsMdManager then initiates the processing by retrieving the logfile data. Once the data has been
retrieved, MsMdProcessEvent determines the active modes of the managed host from which the
processing is occurring by reading that host's active mode-configuration file. This information is
then used by MsMdProcessEvent to open the appropriate management databases (a management
database will exist for each active mode). MsMdProcessEvent will process, then transfer the
logfile records to their appropriate management database according to the event's mode. When all
of the logfile records have been transferred, the open management databases will be closed.

6-338 305-CD-029-002

MsMdManager MsMdProcessEvent MsMdAggregateLogEntry CsFtFTPRelA Current Mode File ManagementRDBMS

GetLogEntry(RWCString&, RWTime, RWTime)

ProcessLogFile(RWCString&)

logfile records returned

GetActiveModes(RWCString&)

OpenMgmtDBs(RWCString&, RWCString)

ProcessEvent(EcAgEvent&)

6-339
305-C

D
-029-002

Figure 6.10-5. Process Logfile Scenario

At this point, the remote logfile has been transferred to the MDA, logfile records processed, and
the records written to the management database. The MsMdManager is then ready to process other
remote logfiles, as necessary.

6.10.7 Management Data Access Structure

Table 6.10-1. Management Data Access Components
Component Name COTS/Custom

Management Data Access Services Custom

Management Data Access User Interface Custom

6.10.7.1 Management Data Access Services CSC

Purpose and Description

The Management Data Access Services CSC provides the ability to centralize and retrieve
management log file data. Additionally it is responsible for accumulating metrics and loading them
to the Management RDBMS.

Mapping to objects implemented by this component

MsMdManager (C++ code)

MsMdConfigurationList (C++ code)

MsMdConfigurationEntry (C++ code)

MsMdSchedule (C++ code)

MsMdScheduleEntry (C++ code)

MsMdAggregateLogFileList (C++ code)

MsMdAggregateLogEntry (C++ code)

MsMdEventList (C++ code)

MsMdEventField (C++ code)

MsMdProcessEvent (C++ code)

MsMdLogBrowser (C++ code)

6.10.7.2 Management Data Access User Interface CSC

Purpose and Description

The Management Data Access User Interface CSC provides the user interface functionality which
allow the users to configure MDA and to browse, sort, and filter log file data.

Mapping to objects implemented by this component

MsMdUserInterface (C++ code / X-Windows design)

6-340 305-CD-029-002

6.10.8 Management Data Access Management and Operation

6.10.8.1 System Management Strategy

The Management Data Access Service will utilize the MSS Management framework for reporting
fault and performance data, as well as lifecycle services. The EcAgManager class will be imported
in order to provide this functionality. Example event data this application will log includes:

• start/end of an MDA user interface

• start/end of a browse request

• start/end of a scheduled log file transfer

• MDA Service faults (transfer errors, DCE errors, etc.)

6.10.8.2 Operator Interfaces

The Management Data Access Service will provide the MsMdUserInterface class as its graphical
user interface. This interface will allow log file data to be browsed, filtered, sorted, chained and
saved. Additionally, this interface will provide the ability to view and change the configuration of
MDA parameters including scheduling, processing and database load times.

6.10.8.3 Reports

The Management Data Access Service does not provide reports.

6.11 Management DBMS and Database

6.11.1 Overview

A COTS Database Management System (DBMS), for which Sybase has been selected, provides
the data storage and retrieval functions a database that is designed to store all ECS management
data. This repository is used by management applications to share management data. Additionally,
from this central repository the M&O Staff will use to perform ad hoc statistical analysis and
generate ad hoc reports to satisfy the ECS report generation requirements. A COTS Report
Generation product will provide the user interface procedures that construct queries in Sybase
SQL format, compute query based results, and format reports for printing and display.

6.11.2 Implementation

The Management Database architecture is an implementation of the ANSI Three-Schema
Architecture. The Internal schema is implemented using the a client/server paradigm. The
programming interface to the Management DBMS is provided by the vendor to create, modify, and
update the management data tables and fields. This programming interface is Structured Query
Language (SQL)-2 compliant. The human/programming interface to the Report Generator is
provided by the vendor to generate standard and/or ad hoc reports. The human interface is Motif
compliant.

6-341 305-CD-029-002

6.12 User Comment Survey

6.12.1User Comment Survey Overview

The User Comment Survey is a server which manages the user comment surveys which are made
available to any user who wishes to provide comments and suggestions about the ECS system.

The surveys are organized by categories. A category may represent a capability of the ECS system.
For each category there is a survey which is a list of questions and one general comment field. The
user can enter an answer for any or all of the questions and the user may enter any general comment
in the comment field. The User Comment Survey server stores all responses in a database which
can be accessed to generate reports.

When a survey is used by a register ECS user, the user's existing responses to the survey will be
retrieved from the database and displayed to the user. The user can then modify his responses, but
whatever is in the survey response area when the user exits the survey will replace what is currently
stored in the database.

If a guest user accesses the survey, his previous responses are not filled in to the survey and when
responses are entered for the survey, new entries are made in the database for the responses.

6.12.2User Comment Survey Context

The User Comment Survey Service, as shown in the context diagram, Figure 6.12-1, interfaces
with the Client and the Management Agent. The information exchanged across these interfaces, as
shown in the diagram, is described here.

The Client Subsystem requests the comment survey information to display the survey categories,
the survey questions and the user's current answers in response to the user's actions. The User
Comment Survey server provides the requested information. The Client Subsystem also sends
updated answers and comments to the User Comment Survey server to be updated in the database.

The User Comment Survey server performs management requests received from the Management
Agent, such as startup and shutdown and sends performance information as well as error
information to the Management Agent.

6.12.3User Comment Survey Object Model

The MsCsSurveyMgr class is the manager class for the server and that class performs most of the
significant functions. The MsCsSurveyMgr class receives and responds to inputs received from
the Client Subsystem. The MsCsSurveyMgr is also considered an interface class to the Sybase
Database which is where the comment survey data is stored.

The server is managed by the ECS Process Framework (EcPfManagedServer) which provides the
communication framework as well as the interface to the Management Agent. As part of the server
startup, the McCsProcessingTimeMetric performance metric is registered with the framework so
that the Management Agent can request and set the value of the metric. The MsCsTimer is the class
which provides the server the mechanism for collecting the processing time.

The User Comment Survey object model is shown in Figure 6.12-2.

6-342 305-CD-029-002

User Comment Survey

Client

Mangement Agent

This System

Mangement Requests

Survey,
Survey Answers/Comments

Survey Answers and Comments,
Survey Requests,
Answer Requests

event data

Figure 6.12-1. User Comment Survey Context Diagram

6.12.3.1 EcAgPerfMetric Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This metric contains performance data.

Attributes:

None

Operations:

None

6-343 305-CD-029-002

MsCsSurveyMgr

EcPfManagedServer

MsCsTimer

startTime
endTime
tz

EcCsTimer()
GetMicroSecs()

db
answerSetMutex
nextAnswerSetId

EcCsSurveyMgr(RWCString& dbType, RWCString& dbServer, RWCString& dbUser,
RWCString& dbPassword, RWCString& dbName)
RetrieveCategories(MsTCsCategoryList **categoryList, EcTLongInt *errorCode)
RetrieveSurvey(MsTCsUserId userId, EcTLongInt categoryId, MsTcsSurveyList
**surveyList, MsTCsComment comment, EcTLongInt *errorCode)
UpdateSurvey(MsTCsUserId userId, EcTLongInt categoryId, MsTCsSurveyList
**surveyList, MsTCsComment comment, EcTLongInt *errorCode)
RetrieveComment(RWDBConnection& connection, EcTLongInt categoryId, MsTCsUserId
userId, EcTLongInt answerSetId, RWCString& comment)
UpdateComment(RWDBConnection& connection, EcTLongInt categoryId, MsTCsUserId
userId, EcTLongInt answerSetId, RWCString& comment)
PopulateNextAnswerSet(RWDBConnection& connection, MsTCsUserId userId, EcTLongInt
categoryID)
IsGuest(MsTCsUserId userId)
ReadConfigFile(EcTChar *MsTCsConfigRec)

RWDBManager

RWDBTable

RWDBSelector

RWDBResult

RWDBMemTable

RWDBReader

RWDBConnection

RWDBDeleter

RWDBSchema

RWDBInserter

[Public]

e

- : struct timeval
- : struct timeval
- : struct timezone

+
+ : EcTLongInt

- : RWDBDatabase
- : DCEPthreadMutex
- : EcTLongInt

+

+ : EcTLongInt
+ : EcTLongInt

+ : EcTLongInt

- : EcTVoid

- : EcTVoid

- : EcTVoid

- : EcTBoolean
- : EcTBoolean

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

Offpage

determine time routine executed

Offpage

Offpage
EcAgPerfMetric

MsCsProcessingTimeMetric

procTime
procTimeMutex

GetProcTime()
SetProcTime(EcTLongInt newTime)

- : EcTLongInt
- : DCEPthreadMutex

+ : EcTLongInt

update

+ : EcTVoid 6-344
305-C

D
-029-002

Figure 6.12-2. User Comment Survey Object Model

Associations:

The EcAgPerfMetric class has associations with the following classes:
None

6.12.3.2 EcPfManagedServer Class

Parent Class:Not Applicable

Public:Yes

Distributed Object:No

Purpose and Description:

This is the container class that starts up the event Manager, table Manager, monitor, port

monitor, discoverer, subagent configuration, static buffer, and the deputy gate. This class

also starts a thread that triggers scheduled events (i.e. polling ECS application's

performance metrics).

Attributes:

None

Operations:

None

Associations:

The EcPfManagedServer class has associations with the following classes:
None

6.12.3.3 MsCsProcessingTimeMetric Class

Parent Class:EcAgPerfMetric

Public:No

Distributed Object:No

Purpose and Description:

This is a performance collecting metric reporting class. This class uses the performance

data collecting metric key mechanism. This class will be registered with the ECS Process

Framework which enables the Management Agent to get the value of the metric and to set

the value of the metric. The metric is the amount of real-time that this process executes.

Attributes:

procTime - This is the metric value which can be set or retrieved. This process sets the
value as it executes and the Management Agent will read this value.

6-345 305-CD-029-002

Data Type:EcTLongInt

Privilege:Private

Default Value:

procTimeMutex - This attribute is used to lock the metric value while it is being read and

written to, in order to prevent the Management Agent from accessing the value when this

process is accessing the value.

Data Type:DCEPthreadMutex

Privilege:Private

Default Value:

Operations:

GetProcTime - Returns the current value of the performance metric.

Arguments:

Return Type:EcTLongInt

Privilege:Public

PDL: No PDL

SetProcTime
Arguments:EcTLongInt newTime
Return Type:EcTVoid
Privilege:Public

Associations:

The MsCsProcessingTimeMetric class has associations with the following classes:
Class: MsCsSurveyMgr update

6.12.3.4 MsCsSurveyMgr Class

Parent Class:EcPfManagedServer

Public:No

Distributed Object:No

Purpose and Description:

This is the Manager class for this process. This class is responsible for taking all of the

inputs to the process and performing the necessary actions. This class also acts as an

interface class for the Sybase database which stores the user survey results. This class

provides methods to read and update the user survey categories, surveys, and comments.

Attributes:

answerSetMutex - Mutex to protect the next answer set ID.
Data Type:DCEPthreadMutex

6-346 305-CD-029-002

Privilege:Private

Default Value:

db - The survey database.

Data Type:RWDBDatabase

Privilege:Private

Default Value:

nextAnswerSetId - The next available answer set ID (for guest survey).

Data Type:EcTLongInt
Privilege:Private
Default Value:

Operations:

EcCsSurveyMgr - This is the constructor for this class.

connection to the specified Sybase database.

Arguments:RWCString& dbType, RWCString& dbServer,

RWCString& dbPassword, RWCString& dbName

Return Type:Void

Privilege:Public

PDL: No PDL

This class initializes the

RWCString& dbUser,

IsGuest - This method determines if the passed user ID represents a guest in the system.

Arguments:MsTCsUserId userId

Return Type:EcTBoolean

Privilege:Private

PDL: No PDL

PopulateNextAnswerSet - This method retrieves and populates to the nextAnswerSetId

attribute, the next available answerSetId.

Arguments:RWDBConnection& connection, MsTCsUserId userId, EcTLongInt

categoryID

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

ReadConfigFile - This method reads the configuration parameters from the configuration

file.

Arguments:EcTChar *MsTCsConfigRec

Return Type:EcTBoolean

Privilege:Private

PDL: No PDL

6-347 305-CD-029-002

RetrieveCategories - This method retrieves the descriptions and icons for all available

survey categories.

Arguments:MsTCsCategoryList **categoryList, EcTLongInt *errorCode

Return Type:EcTLongInt

Privilege:Public

PDL: No PDL

RetrieveComment - This method is used internally to obtain the current comment for a

category and user.

Arguments:RWDBConnection& connection, EcTLongInt categoryId, MsTCsUserId

userId, EcTLongInt answerSetId, RWCString& comment

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

RetrieveSurvey - Based on a user id and category, this method returns a structure

containing all the elements of a survey, including questions, current answers and the

comment for the category. For a guest user, the answers returned will always be zero.

Arguments:MsTCsUserId userId, EcTLongInt categoryId, MsTcsSurveyList

**surveyList, MsTCsComment comment, EcTLongInt *errorCode

Return Type:EcTLongInt

Privilege:Public

PDL: No PDL

UpdateComment - This method is used internally to update the current comment for a

category and user.

Arguments:RWDBConnection& connection, EcTLongInt categoryId, MsTCsUserId

userId, EcTLongInt answerSetId, RWCString& comment

Return Type:EcTVoid

Privilege:Private

PDL: No PDL

UpdateSurvey - Based on a user id and category, this method updates this given survey

answers for the appropriate criteria. For a guest user, a new set of answers is created. For

registered users, the old answers and comments are overwritten.

Arguments:MsTCsUserId userId, EcTLongInt categoryId, MsTCsSurveyList

**surveyList, MsTCsComment comment, EcTLongInt *errorCode

Return Type:EcTLongInt

Privilege:Public

PDL: No PDL

Associations:

6-348 305-CD-029-002

The MsCsSurveyMgr class has associations with the following classes:
Class: RWDBConnection
Class: RWDBDeleter
Class: RWDBInserter
Class: RWDBManager
Class: RWDBMemTable
Class: RWDBReader
Class: RWDBResult
Class: RWDBSchema
Class: RWDBSelector
Class: RWDBTable
Class: MsCsTimer determinetimeroutineexecuted
Class: MsCsProcessingTimeMetric update

6.12.3.5 MsCsTimer Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class is used to collect the amount of time (real-time, not CPU) that this process

spends executing. In each method of this process, an object of this class is constructed and

at the end of the method, the GetMicroSecs method is called. This results in the duration

that the method was executed.

Attributes:

endTime - This attribute is set to the current time when the process temporarily stops

processing.

Data Type:struct timeval

Privilege:Private

Default Value:

startTime - This attribute is set to the current time when this class is constructed.

Data Type:struct timeval

Privilege:Private

Default Value:

tz - A default timezone which is used when the current time is recorded at the beginning

and the end of processing.

Data Type:struct timezone

Privilege:Private

Default Value:

6-349 305-CD-029-002

Operations:

EcCsTimer - The default constructor of this class. The current time is recorded when the

object is constructed.

Arguments:

Return Type:Void

Privilege:Public

PDL: No PDL

GetMicroSecs - This method gets the current time of day and subtracts that value from the

time recorded when the class was constructed. This results in the amount of real-time that

was expended since the class was constructed.

Arguments:

Return Type:EcTLongInt

Privilege:Public

PDL: No PDL

Associations:

The MsCsTimer class has associations with the following classes:
Class: MsCsSurveyMgr determinetimeroutineexecuted

6.12.3.6 RWDBConnection Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWDBConnection class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.7 RWDBDeleter Class

Parent Class:Not Applicable

6-350 305-CD-029-002

Attributes:

None

Operations:

None

Associations:

The RWDBDeleter class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.8 RWDBInserter Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWDBInserter class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.9 RWDBManager Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

6-351 305-CD-029-002

Associations:

The RWDBManager class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.10 RWDBMemTable Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWDBMemTable class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.11 RWDBReader Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWDBReader class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.12 RWDBResult Class

Parent Class:Not Applicable

6-352 305-CD-029-002

Attributes:

None

Operations:

None

Associations:

The RWDBResult class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.13 RWDBSchema Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWDBSchema class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.14 RWDBSelector Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

6-353 305-CD-029-002

Associations:

The RWDBSelector class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.3.15 RWDBTable Class

Parent Class:Not Applicable

Attributes:

None

Operations:

None

Associations:

The RWDBTable class has associations with the following classes:
Class: MsCsSurveyMgr

6.12.4 User Comment Survey Dynamic Model

6.12.4.1 User Fills Out A Survey

This scenario is depicted in Figure 6.13-3.

6.12.4.1.1 Beginning Assumptions

None.

6.12.4.1.2 Interfaces with Other Subsystems and Segments

Client

6.12.4.1.3Stimulus

A user selects the user survey tool to update or enter answers to survey questions for a survey or
enter a comment for a survey.

6.12.4.1.4Participating Classes From the Object Model

MsCsSurveyMgr

6.12.4.1.5Beginning System, Segment and Subsystem State(s)

The system, segment and subsystem are in a steady state.

6-354 305-CD-029-002

User CLS MsCsSurveyMgr

Select a Survey Category

Comment and Exit the Tool

RetrieveSurvey()

(if any) Filled In

UpdateSurvey()

Select The User Survey Tool

Update Survey Answers and/or

RetrieveCategories()

Display Survey Categories

Display Survey with Previous Answers

IsGuest()

IsGuest()

retrieve survey and answers
(if not guest) from DB

retrieve category list
from DB

RetrieveComment()
(if not guest)

IsGuest()

update answers in the DB

UpdateComment()
in the DB

Figure 6.12-3. User Fills Out A Survey

6.12.4.1.6Ending State

The system, segment and subsystem are in a steady state.

6.12.4.1.7Scenario Description

When the user starts the User Comment Survey tool, the client subsystem issues a request for the
survey categories from MsCsSurveyMgr. MsCsSurveyMgr checks to see if the user is a guest user
and performs guest user unique initialization. The survey categories are retrieved from the
Database and returned to CLS to be displayed to the user.

6-355 305-CD-029-002

When the user selects a survey category to display, CLS issues a request for the survey from
MsCsSurveyMgr. MsCsSurveyMgr again checks to see if the user is a guest user. The survey
questions are retrieved from the database. If the user is not a guest, the user's current survey
responses and the user's current comment are retrieved from the Database. The questions, answers,
and comment are returned to CLS to be displayed to the user.

The user will then update or add their responses to the survey questions and will also update the
comment field of the survey. When the user exits the survey, CLS sends the answers and comment
to MsCsSurveyMgr. MsCsSurveyMgr replaces the user's current responses with the received
responses and replaces the comment field if the user is not a guest. For guest users, new entries are
made in the database to store the answers and comment.

6.12.5 User Comment Survey Structure

Table 6.12-1 lists the components of the User Comment Survey Service.

Table 6.12-1. User Comment Survey Components
Component Name COTS/Custom

MsCsSurveyMgr Custom(C++ code)

MsCsTimer Custom(C++ code)

MsCsProcessingTimeMetric Custom(C++ code)

6.12.5.1 Survey Manager CSC

Purpose and Description

The survey manager CSC includes all of the classes for this CI.

6.12.6User Comment Survey Management and Operation

6.12.6.1 System Management Strategy

The User Comment Survey Management Strategy utilizes the MSS Management Agent Services
and the ECS Process Framework (EcPfManagedServer) for its management.

6.12.6.2 Operator Interfaces

The Client Subsystem is providing the user interface for this server.

6.12.6.3 Reports

The following predefined User Comment Survey reports will be available:

Survey Answers By User -- report which lists the answers stored for a specified user for a specified
survey.

Survey Answers By Question -- report which lists all of the answers for a particular survey
question.

Survey Answers By Category -- report which lists all of the answers for all questions for a
particular category.

Comments by User -- report which lists all of the comments a user had (for each category).

6-356 305-CD-029-002

Comments by Category -- report which lists all of the comments from all of the users for a specified
category.

Other user comment survey reports will be generated on an ad hoc basis.

6.13 Enterprise Framework Management Service

6.13.1 Enterprise Framework Management Overview

The Enterprise Framework Management Service is collection of system administration tools which
are integrated using the Tivoli Management Environment. The Enterprise Framework
Management tools provide the operator the ability to administer the underlying framework of the
ECS system.

The Enterprise Framework Management Service consists of the following administrative
capabilities: Software Distribution (described in detail in Software Distribution Management,
Section 5.7 of this document - 305-CD-029-002), Event Monitoring (described in detail in Fault
Management, Section 6.5 of this document - 305-CD-029-002), and System Administration.

System Administration consists of the tools required to administer the underlying system
framework of ECS. System Administration consists of Unix Administration, Database
Administration, DCE Cell Administration, and System Backup.

Unix Administration will be performed using the Tivoli Admin product. Tivoli Admin is a tool
which provides a Graphical User Interface for the administration of a distributed heterogeneous
Unix system. Tivoli Admin manages the following resources: Unix Host, NIS Maps, Host
Namespace, Unix Users, Unix Groups.

Database Administration will be performed for the Sybase DBMS using the ESSM Tivoli Plus
Module. ESSM is an extension to Tivoli's administrative toolset that provides a Graphical User
Interface for Sybase Database Administration. ESSM provides the subset of Sybase DBA
capabilities which are necessary to perform on a regular basis.

DCE Cell Administration will be performed by Hewlett Packard's DCE Cell Management tools
that are provided as part of HP's DCE Core Services. The HP tool set includes the following: CDS
Browser to administer the Cell Directory Service, acctmgr to administer the DCE Security Server,
DCE Cell Configurator (integrated with HP's SAM tool) to administer the DCE cell configuration,
and CellMon to monitor the status of the DCE Cell. The HP DCE Administration tool set is not
integrated with Tivoli, but Tivoli will be used to provide an integrated desktop which will present
icons representing the tools to the operator. The operator will be able to launch the DCE tools from
the Tivoli desktop.

In support of site-wide ECS backup, the DAAC configuration at EDC includes Legatto's
Networker software for network storage management. It provides a suite of integrated tools for
backup and recovery, archive and retrieval, hierarchical storage management, on-line database
backup and system management tool integration. It works on multi-platform networks, is motif
based with on-line help, supports concurrent device support for parallel backup and recovery using
up to 16 storage devices. Both scheduled and ad-hoc backups, recoveries and other data
management services can be performed by authorized users.

6-357 305-CD-029-002

Site-wide system backup will be performed by Legato Systems, Inc's NetWorker product.
NetWorker provides a suite of integrated tools for backup and recovery, archive and retrieval,
hierarchical storage management and on-line database backup. The product supports multi
platform networks, contains a motif-based GUI with on-line help, and supports concurrent device
support for parallel backup and recovery using up to 16 storage devices. Both scheduled and ad
hoc backups, recoveries and other data management services can be performed by authorized
users. NetWorker software consists of two components: a client portion, which runs on the
systems to be backed up, and a server portion, which is the system to which the backup devices are
connected. The client portions will send the data to be backed up to the server portion which then
writes the data out to disk.

6.13.2 Enterprise Framework Management Context

The Enterprise Framework Management Service, as shown in the context diagram, Figure 6.13-1,
interfaces with . The information exchanged across these interfaces, as shown in the diagram, is
described here.

Enterprise Framework
Management

Sybase DBMS

Mangement Agent

Support Staff

ECS Unix Operating Systems

DCE Servers

ECS On-Line Storage Disks

System Backup Tape Stacker

This System

Mangement Requests

Framework Management Displays,
Notifications

Administration Results, Status

Administrative Commands

event data

Administration Results, Status

Administrative Commands

Administrative Commands

Administration Results, Status

Software Distributions

Framework Management Commands

System Backup Data

Recovered Files

Figure 6.13-1. Enterprise Framework Context Diagram

6-358 305-CD-029-002

The Enterprise Framework receives commands from the support staff, implements the commands
on the selected systems or servers and displays the results back to the support staff. In addition,
unsolicited notifications are also sent to the support staff. The Enterprise Framework interfaces
with the objects which are being managed. This includes the Unix Operating Systems running on
all of the ECS machines, the Sysbase DBMS servers running on the ECS machines, the DCE
Servers (Security and CDS), and the hardware including on-line storage disks for software
distributions and the tape stacker for files to be backed up and files to be recovered.

Portions of the Enterprise Framework Management Service perform management requests
received from the Management Agent, such as startup and shutdown.

6.13.3 Enterprise Framework Management Object Model

The object model shows three different hierarchical trees. The primary hierarchy represents the
breakdown of the EnterpriseFramework into its parts. At the first level of the
EnterpriseFramework hierarchy, the Enterprise Framework consists of MsEfSorftwareDistribution
for delivering software or other files to all ECS computers, MsEfEventMonitoring for receiving
and correlating fault messages, and MsEfSystemAdmin which represents the collection of system
administration tools for ECS. MsEfSystemAdmin consists of MsEfUnixAdmin for the
administration of all of the Unix systems in ECS, MsEfDatabaseAdmin for the administration of
all of the Sybase DBMSs in the ECS system, and MsEfSystemBackup for performing backup and
recover actions on the ECS system.

The second hierarchy in the model represents the underlying distributed framework for the Tivoli
product (MsTfTivoliFramework). This framework is what allows Tivoli products and products
integrated into Tivoli to administer our distributed heterogeneous system. The Tivoli framework
provides a CORBA compliant object and message passing mechanism which is used by all Tivoli
products. The Tivoli Framework consists of one Tivoli Server (MsEfTivoliServer) and one Tivoli
Client (MsEfTivoliClient) at each ECS machine.

The third hierarchy consists of the proxy agents to the ECS Management Agent which are used to
allow those portions of the COTS products which are always running to be started up and shutdown
as part of the entire ECS system.

The Enterprise Framework Management Service object model is shown in Figure 6.13-2.

6.13.3.1 EcAgCOTSManager Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

this abstract class embodies the characteristics and functionality of a manager object

responsible for managing a single COTS process. It encapsulates all MSS management

application functions into a single class. The COTS proxy agent developer is responsible

for inheriting from this class and specializing it towards the COTS process to manage.

6-359 305-CD-029-002

Offpage
EnterpriseFramework

MsEfSystemAdminMsEfSoftwareDistribution MsEfEventMonitoring

MsEfUnixAdmin MsEfDatabaseAdmin MsEfDceAdmin MsEfSystemBackup

Tivoli Courier

Tivoli Admin ESSM Tivoli Plus Module
HP CDS Browser

HP acctmgr
HP CellMon

HP DCE Cell Configurator

NetWorker

Tivoli Enterprise Console

EcAgCOTSManager

MsEfTivoliServerProxy MsEfTivoliAgentProxy MsEfNetworkerProxy

MsEfTivoliServer MsEfTivoliClient

Tivoli Management Framework

TMR ClientTMR Server

MsEfTivoliServerProxy()
~MsEfTivoliServerProxy()
Startup()
Shutdown()

MsEfTivoliAgentProxy()
~MsEfTivoliAgentProxy()
Startup()
Shutdown()

MsEfNetworkerProxy()
~MsEfNetworkerProxy()
Startup()
Shutdown()

COTS COTS

COTS COTS COTS COTS

COTS

COTS COTS

MsTfTivoliFramework

OffpageOffpage Offpage

Offpage Offpage Offpage Offpage

Offpage
Offpage Offpage

+
+
+ : EcTVoid
+ : EcTVoid

+
+
+ : EcTVoid
+ : EcTVoid

+
+
+ : EcTVoid
+ : EcTVoid

Offpage

manages
manages

provide distributed framework

manages

provide distributed framework

provide distributed framework

provide distributed framework

6-360
305-C

D
-029-002

Figure 6.13-2. Enterprise Framework Management Service Object Model

Attributes:

None

Operations:

None

Associations:

The EcAgCOTSManager class has associations with the following classes:
None

6.13.3.2 EnterpriseFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

EnterpriseFramework is the Tivoli COTS product the performs enterprise wide services:

System Administraton (Tivoli/Admin), Software distribution (Tivoli/Courier),

performance monitoring (Tivoli/Sentry) and fault correlation (Tivoli/Enterprise Console).

The framework also acts as the integrated desktop for Maintenance and Operations,

integrating other administrative functions such as Sybase database administration, system

backup/restore, and DCE Cell administration.

Attributes:

None

Operations:

None

Associations:

The EnterpriseFramework class has associations with the following classes:
None

6.13.3.3 MsEfDatabaseAdmin Class

Parent Class:MsEfSystemAdmin
Public:No

6-361 305-CD-029-002

Distributed Object:No

Purpose and Description:

This class represents the ESSM Tivoli Plus COTS module. This product extends the Tivoli

product by providing a Database Administration for Sybase databases. The product

contains the subset of database administration features that are perfomred on a regular

basis. The product runs on top of the Tivoli Framework which allows the administration

tool to be run from the Tivoli desktop when the desktop is launched from any machine in

ECS.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsEfDatabaseAdmin class has associations with the following classes:
Class: MsTfTivoliFramework providedistributedframework

6.13.3.4 MsEfDceAdmin Class

Parent Class:MsEfSystemAdmin

Public:No

Distributed Object:No

Purpose and Description:

This class represents the collection of DCE administration tools which are provided in

Hewlett Packard's DCE Core Services product. The tools include: CDS Browser to

administer the CDS Server, acctmgr to administer the Security Server, DCE Cell

Configurator to administer the DCE cell configuration, and CellMon to monitor the status

of the DCE Cell. While these tools are not integrated with the Tivoli product, the Tivoli

desktop will be set up to allow the operator to launch the tools from the integrated desktop.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

6-362 305-CD-029-002

Associations:

The MsEfDceAdmin class has associations with the following classes:
None

6.13.3.5 MsEfEventMonitoring Class

Parent Class:EnterpriseFramework

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Tivoli/TEC (Tivoli Enterprise Console) COTS product. This

product provides a Graphical User Interface fault reporting and fault correlation. Tivoli/

TEC runs on top of the Tivoli Framework which allows the product to perform its functions

on all of the machines in the network at the same time and from the same interface.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsEfEventMonitoring class has associations with the following classes:
Class: MsTfTivoliFramework providedistributedframework

6.13.3.6 MsEfNetworkerProxy Class

Parent Class:EcAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

This is a proxy for the NetWorker Server which provides the interface to the ECS

framework for the COTS product. This class interfaces with the management agent for

startup and shutdown commands.

Attributes:

All Attributes inherited from parent class

6-363 305-CD-029-002

Operations:

MsEfNetworkerProxy - This is the default constructor for the class. The startup and

shutdown routines are registered.

Arguments:

Return Type:Void

Privilege:Public

Shutdown - This method performs a normal shutdown for the NetWorker server.

Arguments:

Return Type:EcTVoid

Privilege:Public

Startup - This method starts up the NetWorker server processes.

Arguments:

Return Type:EcTVoid

Privilege:Public

~MsEfNetworkerProxy - This is the default destructor for the class. Any resources

allocated to the object will be returned to the system.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsEfNetworkerProxy class has associations with the following classes:
Class: MsEfSystemBackup manages

6.13.3.7 MsEfSoftwareDistribution Class

Parent Class:EnterpriseFramework

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Tivoli/Courier COTS product. This product provides software

and file distribution capabilities across the ECS hererogenous network. Tivoli/Courier runs

on top of the Tivoli Framework which allows the product to perform the software and file

distribution on all of the machines in the network at the same time and from the same

interface.

Attributes:

6-364 305-CD-029-002

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsEfSoftwareDistribution class has associations with the following classes:
Class: MsTfTivoliFramework providedistributedframework

6.13.3.8 MsEfSystemAdmin Class

Parent Class:EnterpriseFramework

Public:No

Distributed Object:No

Purpose and Description:

This is an abstract class that consists of the collection of tools which are used to perform

system administration functions.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsEfSystemAdmin class has associations with the following classes:
None

6.13.3.9 MsEfSystemBackup Class

Parent Class:MsEfSystemAdmin

Public:No

Distributed Object:No

Purpose and Description:

This class represents the system backup and restore COTS product NetWorker, by Legato.

While this tool is not integrated with the Tivoli product, the Tivoli desktop will be set up

to allow the operator to launch the tool from the integrated desktop.

6-365 305-CD-029-002

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsEfSystemBackup class has associations with the following classes:
Class: MsEfNetworkerProxy manages

6.13.3.10 MsEfTivoliAgentProxy Class

Parent Class:EcAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

This is a proxy for the Tivoli Agent which provides the interface to the ECS framework for

the COTS product. This class interfaces with the management agent for startup and

shutdown commands.

Attributes:

All Attributes inherited from parent class

Operations:

MsEfTivoliAgentProxy - This is the default constructor for the class. The startup and

shutdown routines are registered.

Arguments:

Return Type:Void

Privilege:Public

Shutdown - This method performs a normal shutdown for the Tivoli agent.

Arguments:

Return Type:EcTVoid

Privilege:Public

Startup - This method starts up the Tivoli Agent processes.

Arguments:

Return Type:EcTVoid

6-366 305-CD-029-002

Privilege:Public

~MsEfTivoliAgentProxy - This is the default destructor for the class. Any resources

allocated to the object will be returned to the system.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsEfTivoliAgentProxy class has associations with the following classes:
Class: MsEfTivoliClient manages

6.13.3.11 MsEfTivoliClient Class

Parent Class:MsTfTivoliFramework

Public:No

Distributed Object:No

Purpose and Description:

This class represents the agent portion of Tivoli's framework. Tivoli uses the framework

to provide system administration across the distributed heterogenous network. There is one

copy of the agent running on every machine in the Tivoli Management Environment (in

ECS each site will be one Tivoli Management Environment).

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsEfTivoliClient class has associations with the following classes:
Class: MsEfTivoliAgentProxy manages

6.13.3.12 MsEfTivoliServer Class

Parent Class:MsTfTivoliFramework

Public:No

Distributed Object:No

Purpose and Description:

This class represents the server portion of Tivoli's framework. Tivoli uses the framework

6-367 305-CD-029-002

to provide system administration across the distributed heterogenous network. There is
only one copy of the server running in the Tivoli Management Environment (which
corresponds to one per site in ECS).

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsEfTivoliServer class has associations with the following classes:
Class: MsEfTivoliServerProxy manages

6.13.3.13 MsEfTivoliServerProxy Class

Parent Class:EcAgCOTSManager

Public:No

Distributed Object:No

Purpose and Description:

This is a proxy for the Tivoli Server which provides the interface to the ECS framework for

the COTS product. This class interfaces with the management agent for startup and

shutdown commands.

Attributes:

All Attributes inherited from parent class

Operations:

MsEfTivoliServerProxy - This is the default constructor for the class. The startup and

shutdown routines are registered.

Arguments:

Return Type:Void

Privilege:Public

Shutdown - This method performs a normal shutdown for the Tivoli server.

Arguments:

Return Type:EcTVoid

Privilege:Public

6-368 305-CD-029-002

Startup - This method starts up the Tivoli Server processes.

Arguments:

Return Type:EcTVoid

Privilege:Public

~MsEfTivoliServerProxy - This is the default destructor for the class. Any resources

allocated to the object will be returned to the system.

Arguments:

Return Type:Void

Privilege:Public

Associations:

The MsEfTivoliServerProxy class has associations with the following classes:
Class: MsEfTivoliServer manages

6.13.3.14 MsEfUnixAdmin Class

Parent Class:MsEfSystemAdmin

Public:No

Distributed Object:No

Purpose and Description:

This class represents the Tivoli/Admin COTS product. This product provides a Graphical

User Interface to Unix system administration tasks. Tivoli/Admin runs on top of the Tivoli

Framework which allows the product to perform Unix administration on all of the machines

in the network at the same time and from the same interface. For example, Tivoli/Admin

will allow an operator to add a new user account to multiple Unix Machines and/or multiple

NIS domains with one action.

Attributes:

All Attributes inherited from parent class

Operations:

All Operations inherited from parent class

Associations:

The MsEfUnixAdmin class has associations with the following classes:
Class: MsTfTivoliFramework providedistributedframework

6-369 305-CD-029-002

6.13.3.15 MsTfTivoliFramework Class

Parent Class:Not Applicable

Public:No

Distributed Object:No

Purpose and Description:

This class represents Tivoli's distributed framework. Tivoli uses the framework to provide

system administration across the distributed heterogenous network. The framework is used

by all components of Tivoli to pass Tivoli objects around the system while performing their

processing.

Attributes:

None

Operations:

None

Associations:

The MsTfTivoliFramework class has associations with the following classes:
Class: MsEfDatabaseAdmin providedistributedframework
Class: MsEfEventMonitoring providedistributedframework
Class: MsEfSoftwareDistribution providedistributedframework
Class: MsEfUnixAdmin providedistributedframework

6.13.4Enterprise Framework Management Dynamic Model

Enterprise Framework Management Service is a collection of tools which enable the operator to
perform administration functions on the ECS system. The tools are all COTS products which
operate independently, so the dynamic model is not applicable to this CSC.

6.13.5Enterprise Framework Management Structure

Table 6.13-1 lists the components of the Enterprise Framework Management Service.

Table 6.13-1. Enterprise Framework Management Service Components (1 of 2)
Object Class Name COTS/Custom

EnterpriseFramework Abstract Class

MsEfSoftwareDistribution COTS (Tivoli Courier)

MsEfEventMonitoring COTS (Tivoli Enterprise Console)

MsEfSystemAdmin Abstract Class

MsEfUnixAdmin COTS (Tivoli Admin)

6-370 305-CD-029-002

Table 6.13-1. Enterprise Framework Management Service Components (2 of 2)

MsEfDatabaseAdmin COTS (ESSM Tivoli Plus Module)

MsEfDceAdmin COTS (HP DCE Administration Tools)

MsEfSystemBackup COTS (Legato Systems, Inc's NetWorker)

MsEfTivoliFramework COTS (Tivoli Management Framework)

MsEfTivoliServer COTS (Tivoli Server)

MsEfTivoliClient COTS (Tivoli Client)

MsEfTivoliServerProxy Custom

MsEfTivoliAgentProxy Custom

MsEfNetworkerProxy Custom

Object Class Name COTS/Custom

6.13.5.1 Software Distribution CSC

Purpose and Description

This CSC manages the distribution of new and updated software to the ECS system. A detailed
description of this functionality is contained in Software Distribution Management, Section 5.7 of
this document - 305-CD-029-002.

6.13.5.2 Event Monitoring CSC

Purpose and Description

This CSC receives and displays to the operator significant events which occur in the system and
provides some automatic correlation of events and automatic recovery from fault events. A
detailed description of this functionality is contained in Fault Management, Section 6.5 of this
document - 305-CD-029-002.

6.13.5.3 System Administration CSC

Purpose and Description

This CSC contains the tools which are used to manage the underlying framework for the ECS
system. These tools include Unix Administration tools, DCE Cell Administration tools, DBMS
Administration tools, and Backup/Restore Administration tools. This CSC also includes the
Backup/Restore client/server software and the associated management of the server.

6.13.5.4 Tivoli Framework CSC

Purpose and Description

This CSC is the underlying framework for the Tivoli product. This CSC consists of a Tivoli server
and many Tivoli clients. This framework provides the distributed environment that enables the
Tivoli tools to administer across the heterogeneous Unix system transparently to the operator. This
CSC also consists of the custom developed components to manage the startup and shutdown of the
Tivoli environment within the ECS infrastructure.

6-371 305-CD-029-002

6.13.6 Enterprise Framework Management Service Management and Operation

6.13.6.1 System Management Strategy

The Management Strategy for this CSC utilizes the MSS Management Agent Services
(EcAgCOTSManager) for its management.

6.13.6.2 Operator Interfaces

The operator interface for this CSC is provided by the individual COTS products. The Tivoli
Desktop will be used to present an integrated desktop environment for the operators. From the
desktop, the operator will be able to access Tivoli functions directly and the operator will be able
to launch the other COTS GUIs from icons on the desktop. The Tivoli Desktop also provides a
mechanism to limit each operator's view into the management toolset. The Tivoli Administrator
operator will setup each operator's desktop and assign operators privileges that will limit what tools
the operator can access.

6.13.6.3 Reports

This CSC is a collection of COTS products. The reports which are available are documented in
the vendor documentation for each product.

6-372 305-CD-029-002

	6. MCI - Management Software CSCI
	Figure 6-1. Management Software CI Context
	6.1 Mode Management
	6.1.1 Mode Management Overview
	Figure 6.1-1. Mode Management Service Interface Ov...
	Figure 6.1-2. HP OpenView Multi-Session View Diagr...

	6.1.2 Mode Management Context
	Figure 6.1-3. Mode Management Context Diagram

	6.1.3 Mode Management Object Model
	Figure 6.1-4. Mode Management Object Model Diagram...

	6.1.4 Mode Management Dynamic Model
	Figure 6.1-5. MMS Mode Activation Event Trace

	6.1.5 Mode Management Structure
	6.1.6 Mode Management Management and Operation

	6.2 Accountability Management
	6.2.1 Accountability Management Overview
	6.2.2 Accountability Management Context
	Figure 6.2-1. Accountability Management Context Di...

	6.2.3 Accountability Management Object Model
	Figure 6.2-2. Accountability Management Object Mod...
	Figure 6.2-3. Accountability Management Object Mod...
	Figure 6.2-4. Accountability Management Object Mod...
	Figure 6.2-5. Accountability Management Object Mod...
	Figure 6.2-6. Accountability Management Object Mod...
	Figure 6.2-7. Accountability Management Object Mod...

	6.2.4 Accountability Management Dynamic Model
	Figure 6.2-8. Retrieving a User's Email Address
	Figure 6.2-9. Request Tracking Overview
	Figure 6.2-10. Request Tracking-Creating An Order
	Figure 6.2-11. Request Tracking-Collecting Resourc...
	Figure 6.2-12. Request Tracking-Update The State o...
	Figure 6.2-13. Request Tracking-Spawning A Sub-Ord...
	Figure 6.2-14. Request Tracking-Collecting Resourc...
	Figure 6.2-15. Request Tracking-Canceling A Sub-Or...
	Figure 6.2-16. Request Tracking-Finished Processin...

	6.2.5 Accountability Management Structure
	6.2.6 Accountability Management and Operation

	6.3 Billing and Accounting
	6.3.1 Billing and Accounting Overview
	6.3.2 Billing and Accounting Context
	6.3.3 Billing and Accounting Object Model
	Figure 6.3-1. Billing and Accounting Context Diagr...
	Figure 6.3-2. Billing and Accounting Object Model

	6.3.4 Billing and Accounting Dynamic Model
	Figure 6.3-3. Billing and Invoicing a Science User...
	Figure 6.3-4. Receiving and Posting Science User P...

	6.3.5 Billing and Accounting Structure
	6.3.6 Billing and Accounting Management and Operat...

	6.4 Report Generation Service
	6.4.1 Report Generation Service Overview
	6.4.2 Report Generation Context
	Figure 6.4-1. Report Generation Context Diagram

	6.4.3 Report Generation Object Model
	Figure 6.4-2. Report Generation Object Model

	6.4.4 Report Generation Dynamic Model
	Figure 6.4-3. Request to Browse a Management Repor...
	Figure 6.4-4. Request to Generate an Adhoc Report
	Figure 6.4-5. Request to Add a New Report to the S...

	6.4.5 Report Generation Service Structure
	6.4.6 Report Generation Management and Operation

	6.5 Fault Management
	6.5.1 Fault Management Overview
	6.5.2 Fault Management Context
	6.5.3 Fault Management Object Model
	Figure 6.5-1. Fault Management Context Diagram
	Figure 6.5-2. Fault Management Object Model

	6.5.4 Fault Management Dynamic Model
	Figure 6.5-3. Fault Notification by an ECS Applica...

	6.5.5 Fault Management Structure
	6.5.6 Fault Management Management and Operation

	6.6 Performance Management
	6.6.1 Performance Management Overview
	6.6.2 Performance Management Context
	6.6.3 Performance Management Object Model
	Figure 6.6-1. Performance Management Context Diagr...
	Figure 6.6-2. Performance Management Object Model

	6.6.4 Performance Management Dynamic Model
	Figure 6.6-3. Degradation of Performance Alert
	Figure 6.6-4. Providing Performance Summary to SMC...

	6.6.5 Performance Management Structure
	6.6.6 Performance Management Management and Operat...

	6.7 Physical Configuration Management Service
	6.7.1 Physical Configuration Management Service Ov...
	6.7.2 Physical Configuration Management Service Co...
	Figure 6.7-1. Physical Configuration Management Se...

	6.7.3 Physical Configuration Management Service Ob...
	Figure 6.7-2. Physical Configuration Management Se...

	6.7.4 Physical Configuration Management Service Dy...
	Figure 6.7-3. Add A New Node
	Figure 6.7-4. Move An Existing Node
	Figure 6.7-5. Delete An Existing Node

	6.7.5 Physical Configuration Management Service St...
	6.7.6 Physical Configuration Management Service Ma...

	6.8 Security Management
	6.8.1 Security Management Overview
	6.8.2 Security Management Context
	Figure 6.8-1. Security Management Context Diagram

	6.8.3 Security Management Object Model
	Figure 6.8-2. Security Management Object Model

	6.8.4 Security Management Dynamic Model
	Figure 6.8-3. Executing a Compliance Test
	Figure 6.8-4. Reporting a Security Intrusion

	6.8.5 Security Management Structure
	6.8.6 Security Management Management and Operation...

	6.9 Trouble Ticketing
	6.9.1 Trouble Ticketing Overview
	6.9.2 Trouble Ticketing Context
	6.9.3 Trouble Ticketing Object Model
	Figure 6.9-1. Trouble Ticketing Context Diagram
	Figure 6.9-2. Trouble Ticketing Object Model

	6.9.4 Trouble Ticketing Dynamic Model
	Figure 6.9-3. User Submits Trouble Ticket
	Figure 6.9-4. User Submits Trouble Ticket When Rem...
	Figure 6.9-5. A Trouble Ticket is Worked
	Figure 6.9-6. A Trouble Ticket is Escalated
	Figure 6.9-7. A Trouble Ticket is Forwarded

	6.9.5 Trouble Ticketing Structure
	6.9.6 Trouble Ticketing Management and Operation

	6.10 Management Data Access
	6.10.1 Management Data Access Overview
	6.10.2 Management Data Access Context
	6.10.3 Management Data Access Object Model
	Figure 6.10-1. Management Data Access Context Diag...
	Figure 6.10-2. Management Data Access Object Model...

	6.10.4 Management Data Access Dynamic Model
	Figure 6.10-3. User Browses Log File Data

	6.10.5 Management Data Access Dynamic Model
	Figure 6.10-4. User Chains Logfile Data

	6.10.6 Management Data Access Dynamic Model
	Figure 6.10-5. Process Logfile Scenario

	6.10.7 Management Data Access Structure
	6.10.8 Management Data Access Management and Opera...

	6.11 Management DBMS and Database
	6.11.1 Overview
	6.11.2 Implementation

	6.12 User Comment Survey
	6.12.1 User Comment Survey Overview
	6.12.2 User Comment Survey Context
	6.12.3 User Comment Survey Object Model
	Figure 6.12-1. User Comment Survey Context Diagram...
	Figure 6.12-2. User Comment Survey Object Model

	6.12.4 User Comment Survey Dynamic Model
	Figure 6.12-3. User Fills Out A Survey

	6.12.5 User Comment Survey Structure
	6.12.6 User Comment Survey Management and Operatio...

	6.13 Enterprise Framework Management Service
	6.13.1 Enterprise Framework Management Overview
	6.13.2 Enterprise Framework Management Context
	Figure 6.13-1. Enterprise Framework Context Diagra...

	6.13.3 Enterprise Framework Management Object Mode...
	Figure 6.13-2. Enterprise Framework Management Ser...

	6.13.4 Enterprise Framework Management Dynamic Mod...
	6.13.5 Enterprise Framework Management Structure
	6.13.6 Enterprise Framework Management Service Man...

